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Abstract:- In this paper we propose three 

dimensional pilot aided channel estimation (PACE) 

for MIMO/OQAM systems with spatially correlated 

channels. The scheme allocates pilots in time, 

frequency, and space. The scheme takes advantage 

of channel correlation to reduce the pilot overhead 

without lowering the channel estimation accuracy. 

Simulation results confirm the success of this scheme 

in reducing the number of pilots by half. 

I. INTRODUCTION 

Multicarrier modulation (MCM) has received much 

interest in recent wireless communications research; 

since MCM signals are robust to multipath fading [1].  

Digital filter banks can be used to generate MCM 

signals. A special case of filter bank multicarrier 

(FBMC) modulation is orthogonal frequency division 

multiplexing (OFDM). The major difference between 

FBMC and OFDM is the improved spectral efficiency 

of FBMC [1]. This is due to the absence of cyclic prefix 

that is used in OFDM. Another advantage of FBMC 

modulation is that it uses frequency well-localized pulse 

shaping instead of rectangular pulse shaping [2]. 

Subcarriers are modulated using offset QAM (OQAM) 

[1]. 

Multiple-input multiple-output (MIMO) systems offer 

significant capacity gains over independent narrow-

band channels having the same total bandwidth [3]. 

Spatial diversity can be used to achieve performance 

gains in MIMO systems. Maximum diversity gain can 

be obtained when fading is uncorrelated across antenna 

pairs [4]. Over a multipath channel, it makes sense to 

use MCM with MIMO [5]. Channel estimation (CE) is 

very important in wireless systems [6]. Spatial 

correlation of antennas has been exploited to enhance 

the CE accuracy [7], and/or to raise the spectral 

efficiency through reducing the pilot density [8] by 

inserting pilot symbols at a subset of the transmit 

antennas. CE has been proposed for OFDM systems by 

exploiting the channel correlation in the time and 

frequency domains [9]. We refer to these schemes as 

two-dimensional (2D). For uncorrelated transmit 

antennas, pilot symbols decrease the capacity gain, 

especially when the number of transmit antennas is 

large [10]. In MIMO-OFDM systems, with spatially 

correlated transmit antennas, channel correlations can 

be exploited to add a third (spatial) dimension to the CE 

process [7][8]. 

Channel estimation in FBMC systems is more difficult 

than in OFDM because of intrinsic imaginary 

interference suffered by adjacent subcarriers. This 

interference results from limiting the orthogonality of 

subcarriers to the real field. Channel estimation in 

FBMC systems has been recently studied for preamble-

based [11] and scattered pilots-based [12] schemes. 

In this paper, we study scattered-pilots channel 

estimation for FMBC-MIMO systems with correlated 

transmit antennas. We propose three dimensional pilot 

aided channel estimation (3D-PACE) for FMBC-MIMO 

systems operating on spatially correlated fading 

channels. Pilots are distributed in time, frequency, and 

space. The proposed scheme copes with the intrinsic 

interference of FMBC-MIMO, and takes advantage of 

spatial correlations to reduce the total pilot overhead; 

without degrading the CE performance. Simulation 

results confirm success of the proposed scheme in 

reducing the number of pilots by a half. 

This paper is organized as follows. In section II, we 

introduce FBMC modulation and the channel model. 

3D-PACE FMBC-MIMO CE and proposed PACE 

scheme is described in section III. Section III also 

discusses pilot reduction with spatially correlated 

transmit antennas. Results are given in section IV. The 

paper is concluded in section V. 

II. FBMC MODULATION AND CHANNEL MODELING 

A. FBMC Modulation 

Let’s consider a multicarrier wireless communication 

system employing an even number of subcarriers 

2M N . The signal at the output of the SFB can be 

expressed as follows [1]: 
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where ,m na  are the OQAM symbols (the real and 

imaginary parts of the QAM symbols ) and 0 1F T  is 

the subcarrier spacing. The multicarrier symbol duration 

is sT MT . The time offset between the real and 

imaginary parts of the symbols
 
is 0 2T   [1]. 
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The prototype filter impulse response ( )g t  will be 

assumed to be real and symmetric. Let’s define 

 02
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This allows (1) to be rewritten in the form 
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Assuming a noise-free time varying channel, the 

demodulated symbol over the -thm  subcarrier during 

the -thn  symbol period is given by: 

 , , , ,m n m n m n m nr a h I    (4) 

where ,m nh  is the channel response, and ,m nI   is the 

intrinsic interference term, given by: 
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Assuming a well localized prototype filter, the 

summations in (5) have significant values only for

,( , ) m np q  , where ,m n  is the subset of subcarrier 

and time indices near ( , )m n . Equation  (4) can be 

approximated by 

  , ,, , m n m nm n m n a Ir h   (6) 

where 
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In this work, we use a nearly perfect reconstruction 

(NPR) prototype filter of length 4L M [2], the used 

prototype filter is designed based on the frequency 

sampling method and has a very low NPR noise 

variance which is ignored in our analysis. Table 1 

illustrates the most effective values of the 

transmultiplexer response ( ,p qg ) of the reference filter 

bank system [2]. Ignoring the common factor ,m nh , 

,m nr  can be expressed as the sum of three terms as 

follows: 
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where  *
, , ( , )m n m n m n   , simple mathematical 

manipulation of (8) leads to
 

 , , ,m n m n m nr a jI   (9) 

where  
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B. Channel Modeling 

The channel is represented using a P -tap delay line 

filter model. User mobility will be assumed to induce 

weight variations in the tap coefficients. Channel tap 

weights will be denoted by  
1

, 0

P

p n p
c




. Tap weights will 

be assumed to be complex-valued. Following [8], the 

channel impulse response can be represented in the form 
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where 
( ) ( )   is the response of antenna   at 

departure angle  , p  is the departure angle of path ,p  

p  is the of path p  and T  is the multicarrier symbol 

duration. Assuming the transmit antennas are placed in 

a uniform linear array (ULA) with spacing d , the 

response of antenna   takes the form [13] 
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where   is the carrier wavelength. Let’s define the 3-D 

channel correlation function 
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Note that this function involves a frequency index m , a 

time index n  and a spatial index  . In practice, it can 

be assumed that the time correlation is the same of all 

P  paths. Spatial correlations, however, are usually 

different for different paths. The correlation function in 

(13) can be expressed as the product of a time 

correlation function and a frequency-space correlation 

function , ( , )f sR m   [8] 

 ,( , , ) ( ) ( , )t f sR m n R n R m        (14) 

The time correlation function
 
is given by [14]: 

 0 ,max( ) (2 )t dR n J n f T   (15) 

where ,maxdf is the maximum Doppler frequency and 

0 (.)J  is the first kind Bessel function of zero order. The  

frequency-space correlation function is given by[8]: 
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The frequency correlation function , ( )p fR m  is given 

by [8]: 
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Where 
22
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 . The spatial correlation 

function , ( )p sR   between antennas   and   , for 

the considered channel model, has the form [8] 
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Table 1: Transmultiplexer Response 

 
n-2 n-1 n n+1 n+2 

m-1 -.1250 -j.2058 0.2393 j.2058 -.1250 

m 0 .5644 1 .5644 0 

m+1 -.1250 j.2058 0.2393 -j.2058 -.1250 

III. 3D PACE MIMO-OFDM/OQAM CE 

A. Background 

In the proposed scheme tN  transmit antennas and one 

receive antenna are assumed. Real symbols ( )
,m na   are 

assumed to be transmitted over antenna  , where 

0 tN  . After demodulation we have 
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where ( )
,m nh   denotes the channel transfer function 

between transmit antenna   and the receive antenna,
 

( )
,m nI   is the intrinsic interference due to transmitted 

( )
,m na   over antenna  , and ,m nz  is zero mean additive 

white Gaussian noise (AWGN) with variance 0N . 

In 2D PACE, samples of the transmission channel in the 

frequency and time directions are estimated through the 

use of pilots that are inserted at given time-frequency 

locations. After estimating the channel coefficients at 

pilot locations, the whole channel can be recovered by 

interpolating these samples. In systems with multiple 

correlated transmit antennas, this idea can be extended 

to the spatial domain, such that the pilots are distributed 

in three dimensions (space, frequency, and time). 

For simplicity, let us start with a single transmit 

antenna. If a pilot ,m np  is transmitted over subcarrier 

m , at time n , and from antenna  , (19) becomes 

  , ,, , ,m n m nm n m n m np Ir h z   (20) 

Define ,m nh  as the estimated channel coefficient at pilot 

,m np  location as: 
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It is clear that ,m nh  cannot be recovered immediately 

even with the knowledge of ,m np ; because of the 

presence of the intrinsic interference term ,m nI . This 

problem can be solved using the so-called auxiliary pilot 

approach, as presented in [12]. In this approach an 

auxiliary pilot ,m nx  is required to mitigate the 

interference that is generated by neighboring symbols. 

Interference can be compensated by setting the value of 

one of the neighboring symbols, say ,m nx , to the total 

intrinsic interference, making the summation in (10) 

almost equal zero. To minimize the magnitude of an 

auxiliary pilot in the used NPR filter, we locate the 

auxiliary pilot immediately before or after the main pilot

,m np , i.e. at ( , 1)m n  [15]. Without loss of generality, 

in this paper we locate the auxiliary pilot immediately 

before the main pilot. By using an auxiliary pilot two 

OQAM symbols (or one QAM symbol) are wasted. 

Thus, the pilot overhead using this scheme is equal to 

the pilot overhead in OFDM. 

B. Proposed Pilot Aided Channel Estimation Scheme 

Let’s consider pilot signal 
 

,

p

p pm n
p


 transmitted over 

antenna p , where 0 1p tN   , and at frequency-

time index ( , )p pm n . This represents the pilot used to 

recover the CTF coefficient 
 

,

p

p pm n
h


. Now, from (19), 
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This can be rewritten in the form 
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To recover 
( )

,
p

m nh


, both aI  and II  terms in (23) should 

be zero. A simple way to zero these terms is to set 
( )

, 0m na    for p   (to cancel aI ), and to use 

auxiliary pilots over all antennas (to cancel II ), as 

shown in Figure 1. Then, ,m nr  becomes 
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Based on the above, 
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 can be recovered by: 
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The transmission symbols can be written in the form 
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C. Pilot Reduction with Spatially Correlated Transmit 

Antennas 

For the proposed three dimensional (3D) PACE, spatial 

correlations among antennas are exploited to reduce the 

pilot overhead. By allowing for a sD  spatial pilot 

spacing, pilots are only inserted on a subset of transmit 

antennas. The channel response of all transmit antennas 

is obtained by interpolation in space. 

Let sN , fN  and tN  be the numbers of pilots which 

are distributed in space, frequency and time, 

respectively. The total number of pilot is 

P s f tN N N N . A 3D pilot grid can be uniquely 

described by [16] 

 0   p D p p   (28) 

where 
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The symbols fD  and tD  denote the pilot spacings in 

frequency and time, respectively, p  denotes the 

location of the pilot signal,
 

p  is the pilot index vector, 

and 0p  accounts for the shift of the first pilot with 

respect to [0 0 0]T
. The sampling matrix D  

completely determines pilot pattern. 
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Figure 1: Pilots in the frequency-time plane 

   

In general, non-zero off-diagonal elements of D  

assemble a non-rectangular pilot grid; setting 0ftd   

and/or 0ft   in (29) results in a shifted time-

frequency grid over indices m  and n . The parameter 

pairs sfd , sf  and std , st  shift pilots along the 

space-frequency and space-time dimensions, 

respectively. Not all PN  pilots may be utilized for 

channel estimation. Rather, the estimation of the CTF at 

a certain subcarrier may be restricted to a subset of 

pilots (closed set to estimated position) in time, 

t tM N , frequency, f fM N , and space,
 s sM N . 

The received pilot sequence of dimension 1M  , with 

f t sM M M M , is a subsampled version of the 3D 

CTF corrupted by noise. 

D. Derivation of the Wiener Interpolation Filter 

Based on the minimum mean squared error (MMSE) 

criterion, the estimate of the  3D CTF, denoted by 
( )

,
ˆ
m nh 

, 

is determined using a 3D FIR Wiener interpolation filter 

(WIF), with M  taps, and coefficients w [ , , ]H m n  . 

 ( )
,

ˆ w [ , , ]hH
m n d dh m n   (30) 

where h  denotes the received pilot sequence of length 

M . The WIF 
1w [ , , ] R p[ , , ]H

d d d dm n m n   

minimizes the means squared error (MSE) between the 

desired response ( )
,m nh   and the filtered output 

( )
,

ˆ
m nh 

 given 

h . The matrix 

 
1

R [YY ] [HH ] IH HE E

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is the M M  3D correlation matrix of the received pilots 

h , where [HH ]HE is the M M  correlation matrix of 

the CTF at pilot positions excluding the AWGN term,   

is the SNR and I  denotes the M M  identity matrix. 

The 3D cross-correlation function p[ , , ]d dm n   with 

dimension 1M   represents the cross-correlation 

between h  and the desired response ( )
,m nh  . 

IV. SIMULATION RESULTS 

Simulations have been carried out with the channel in 

[8]. We consider FBMC-MIMO systems with 

{2,4}tN   transmit antennas, with 0.5d   element 

spacing, based on the IST-WINNER project [17] and 

one receive antenna. Simulation parameters are 

borrowed from WiMAX. Signal bandwidth is 

10 MHzB  , 1024M   subcarriers, subcarrier spacing 

is 0 10.94 kHzF  , and the sampling frequency of 

QAM symbols is 11.2 MHz . At 2.5 GHz , we consider 

an urban mobility scenario with velocities up to 

50 km/h . Pilot spacings are chosen to be 16fD  , 

2tD  , and {1,2}sD 
 
[8]. WLOG, we set 16fM  , 

2tM  , and s T sM N D . The matrix D  can be in 

the form 
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This gives the same pilot grid for all antennas. To 

handle the pilot and the auxiliary pilot locations, pilot 

patterns are shifted in time and/or frequency keeping in 



  

mind that no auxiliary pilot windows are overlapped. 

This shift can be achieved by setting 0p
 
in (28).  For 

example, and without loss of generality, the values for 

0p
 
can be put in the form 

 0

[0 0 0],   for antenna 1

[0 3 0],   for antenna 2

[5 3 0],   for antenna 3

[5 0 0],   for antenna 4

T

p

 
 
 
 
 
 

 (33) 

 

where the setting in (33) is not unique. To show the 

performance of our channel estimation scheme, we have 

compared three cases of simulation by plotting the MSE 

as function of the SNR. The first case is 3D-PACE with 

1sD  , where pilots are inserted at all transmit 

antennas. The second case is 3D-PACE with 2sD  , 

where pilots are inserted only at a subset of the transmit 

antennas. The third case is conventional 2D-PACE, 

which does not attempt to exploit spatial correlation. 

The cases 3D-PACE with 1sD   and 2D-PACE employ 

the same pilot grid and exhibit the same pilot overhead. 

To compare the channel estimation performance of high 

spatial channel correlation to the channel estimation 

performance of channel with low spatial correlation, the 

two channel models are applied to the proposed 3D-

channel estimation, WINNER typical urban channel 

model (model C2 in [18]) and no line of sight indoor 

office environment channel model. In the C2 channel 

model, the angles of departure of the channel paths are 

distributed with a 35o  angular spread. This value of 

small angular spread encourages the transmit antennas 

to be highly correlated in space. 

An example of the system has been modeled by C2 

channel is an outdoor macro-cell with a MIMO 

downlink where the transmitter base station is located 

above rooftop. The departing ray angles are included 

within a narrow angular spread rising the spatially 

correlation between transmit antennas. In the A1 

channel model, the angles of departure of the channel 

paths are distributed with angular spread of 200o
 

which reduces the spatial correlation at the transmit 

antennas. A1 channel model describes an indoor office 

environment where the base station is located under the 

rooftop.  

Figure 2 shows the performance of the proposed 

FBMC-MIMO ( 4tN  ) system applied to both channel 

models( C2 and A1). For the high spatial correlated 

channel (C2), If 3D-PACE with 1sD 
 
and 2D-PACE 

are compared, we can see that the MSE performance of 

the former is lower than that of the latter, because 3D-

PACE, with 1sD 
 
exploits the spatial correlation for 

an improved channel estimation. The same holds true 

when we compare 3D-PACE, with 1sD   to 3D-PACE, 

with 2sD  , because the 3D-PACE, with 1sD   uses 

twice the number of pilots in its estimation. Now, for 

2D-PACE and 3D-PACE, with 1sD  , it can be noticed 

that both 2D-PACE and 3D-PACE, 1sD 
 

have 

approximately the same MSE performance.  

For low spatial correlation channel (A1), the 

performance of 3D-PACE, with 1sD 
 
is almost the 

same as the performance of 2D-PACE. This is an 

expected result because the channel has very low spatial 

correlation that cannot be exploited to improve the 

channel estimation performance. 

 

 

Figure 2: MSE performance for 4x1 FBMC-MIMO 

 

Figure 3 shows that MSE performance for FBMC-

MIMO 2tN   applied to C2 and A1 channels. For C2 

model, the performance of 3D-PACE with 1sD 
 
is 

slightly improved compared to the performance of 2D-

PACE. And the performance of 3D-PACE with 2sD 
 

is worse than the performance of 2D-PACE with 

2tN 
 
transmit antenna. 

 

 

Figure 3: MSE performance for 2x1 FBMC-MIMO  
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Now, for 2D-PACE and 3D-PACE with 2sD  , it can 

be noticed that the performance of 2D-PACE is better 

than the performance of 3D-PACE, with 2sD  . For 

A1 channel model, the MSE performance of 3D-PACE 

with 1sD 
 
is almost the same as the performance of 

2D-PACE, and the performance of 3D-PACE with 

2sD 
 

is worse than the performance of 2D-PACE 

with 2tN 
 
transmit antennas. 

It can be concluded that the proposed 3D-PACE is 

efficient over high spatially correlated channel (like C2 

channel), and that the pilot overhead can be reduced (up 

to a factor of two for 4x1 FBMC-MIMO) without 

lowering the CE performance compared with the 

performance of 2D-PACE. On the other hand, the 3D-

PACE is inefficient over channels with low spatial 

correlation (like A1 channel). 

 

V. CONCLUSION 

Three dimensional pilot aided channel estimation 

(PACE) has been proposed for MIMO/OQAM systems 

with spatially correlated channels. The proposed scheme 

is based on allocating pilots in the three dimensions of 

time, frequency, and space. The proposed scheme copes 

with the intrinsic interference of MIMO/OQAM, and 

takes advantage of spatial channel correlation to reduce 

the total pilot overhead without lowering the channel 

estimation accuracy. Simulation results confirm the 

success of the proposed scheme in reducing the total 

pilots by half. 

It can be concluded that the proposed 3D-PACE is 

efficient over highly spatially correlated channels (like 

C2 channel) and the pilot overhead can be reduced (up 

to a factor of two for 4x1 FBMC-MIMO) without 

lowering the CE performance compared with the 

performance of 2D-PACE. On the other hand, the 3D-

PACE is inefficient over the channel with low spatial 

correlation (like A1 channel). 
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