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Abstract

This paper deals with a problem in which the joint statistics of a

set of N random variables are known. Based on this knowledge, we

derive the joint probability density function (PDF) of the L largest

random variables (L≤N). The N random variables will be assumed

to be correlated and non-identically distributed. Problems typical

to this one are normally encountered in the performance analysis of

a certain class of receivers used in multipath fading channels with

correlated and unbalanced diversity branches. In this application,

the receiver has access to N signal-to-noise ratio (SNR) random

variables, and it has to make a symbol decision based on the largest

L SNRs. This class of receivers is widely known as generalized

selection combining (GSC) receivers.
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1. Introduction

A wireless communication channel is usually characterized
by a randomly time-varying impulse response. This is a
direct consequence of the continuously changing character-
istics of the transmission medium. A mobile communica-
tions channel is a good example of this kind of channels.
The signal transmitted through a mobile or wireless chan-
nel usually undergoes a series of reflections before reaching
its final destination at the receiver. Therefore, it is normal
that the receiver can receive multiple copies of the same
signal through a multitude of paths (this is the multipath
effect), all originating at the transmitter. In mathematical
terms the received signal is usually modelled as having a
randomly time-varying amplitude. This effect is known
as fading. As explained briefly above, fading occurs in
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channels with time-varying characteristics, an example of
which is represented by multipath channels.

Multipath fading can severely degrade error rate per-
formance of wireless communication systems. A widely
used statistical model of fading channels is the so-called
Nakagami-m, introduced by Nakagami in [1], and derived
in detail and proved to be appropriate as a model of fading
channels in [2]. In this model the envelope of the received
signal is modelled by a Nakagami-m random variable. This
model has attracted a great deal of research interest re-
cently [3–6]. In [3] the authors derive the symbol error
probability for coherent detection of several types of M -
ary modulation schemes over Nakagami fading channels
using the maximal ratio combining (MRC) method. In [4]
the authors use an approach based on the moment gener-
ating function (MGF) of the combined signal-to-noise ra-
tio (SNR) to study generalized selection combining (GSC)
schemes in independent Nakagami fading channels. In
[5] the authors derive bit error probabilities of equal gain
combining (EGC) with quadrature differential phase shift
keying (QDPSK) modulation over correlated Nakagami
fading channels. In [6] the author presents a generic char-
acterization of Nakagami fading channels based on a three-
parameter model. The parameters used in the channel
characterization model proposed in [6] are the correlations
between fading branches, average branch powers and a fad-
ing factor that quantifies the severity of fading. A lot more
on Nakagami fading can be found in the open literature
([7–17] are some of the more important examples).

In other well-known fading channel models, the re-
ceived signal envelope can be modelled by a Rayleigh or a
Rician distributed random variable. The latter is usually
used in channels where a strong line of sight component
(direct path between the transmitter and the receiver) is
present. An attractive feature of the Nakagami fading
model is that both the Rayleigh and the Rician models
can be treated as special cases of the more general case of
Nakagami fading.

Whatever model is used to describe the signal-fading
behaviour, the result is a random variation of the received
signal envelope and phase. As a result, the received
signal has a time-varying envelope. In any communication
receiver, it is vital to have a maximum received signal
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power so that the error rate can be kept within acceptable
ranges. Error rates naturally tend to be higher when the
signal envelope becomes lower. This explains how fading
is a source of receiver performance degradation.

Of the many approaches to countermeasure the effects
of signal fading is the use of diversity [2, 18, 19]. The con-
cept of diversity reception is as follows [20]: The receiver
is supplied with several replicas of the same information
signal transmitted over several fading channels. Therefore,
the probability that all signal replicas will have simultane-
ous deep fading is considerably reduced. To illustrate this
idea, let the received signal power over one of the diver-
sity channels have a probability p of being small enough
to cause a symbol error. Let’s assume that there are L
independent channels over which the signals are received.
Hence, simple probability theory suggests that there is a
probability pL that the power received over each of the L
channels will be small enough to cause a symbol error.

There is a variety of diversity schemes that can be
chosen according to different system architectures and re-
quirements [7–17]. Antenna diversity is known to be the
simplest among diversity techniques [21, 22], and it could
be used with virtually all systems. In an antenna diversity
system the receiver employs multiple antennas to receive
the transmitted signal. The antennas should be appro-
priately spaced to insure independent fading among the
received signals. Alternatively, in a frequency diversity
system [20] the same information message is transmitted
over multiple carriers with properly chosen frequency sep-
aration. Carrier frequency separation should be adjusted
to insure independent fading among the received signals.
Other diversity methods include time diversity and the use
of spread spectrum techniques [20].

A suitable combining technique has to be used in the
receiver to take advantage of diversity reception and to
attain a satisfactory level of performance [20, 23]. The most
common measure of performance is the receiver symbol
error rate. There are practical cases where an error rate of
10−3 is more than adequate (e.g., speech communications),
while in other applications the same error rate is far too
poor (e.g., data communications). As mentioned above,
the received signal power is different over the different
diversity channels (branches). As a result, a diversity
receiver is presented with a set of different SNRs over the
different diversity branches. The combining method in the
receiver defines how the receiver uses the diversity channel
outputs to make symbol decisions. Combining methods
vary in both performance and complexity, where usually
better performance is associated with more complexity.

GSC [24] is a combining method that presents a trade-
off between combiner complexity and error rate perfor-
mance. MRC provides optimum error rate performance at
the cost of an appreciable amount of receiver complexity
[20]. With MRC, knowledge of the channel-fading charac-
teristics is a requirement. Signal fading can be mathemat-
ically represented as a random amplitude effect accompa-
nied by a random phase shift. An MRC combiner assumes
that these random amplitude and phase effects are per-
fectly known (or, alternatively, are accurately estimated).
On the other hand, selection combining (SC) represents

the simplest among combining schemes. Using SC, only
the one branch with the largest SNR is used to form the
decision variable upon which the final symbol decision is
based. Obviously, this involves a substantial reduction in
the receiver complexity while allowing a certain degree of
performance loss. To reduce the performance degradation
in using SC, GSC which selects the branches with the L
largest instantaneous SNRs (from among a total of N >L
branches) can be used [25, 26]. The outputs of the selected
branches can be combined using MRC or EGC. In the
remaining part of this paper the L largest SNR random
variables will be referred to as the L maxima.

As an example of the use of GSC, consider a system
with N =4 diversity branches. Let’s assume that the L=2
branch outputs with largest SNRs are to be combined. If
the branch SNRs over a certain symbol period are {3.0,
1.1, 4.5, 2.6} dB, then the receiver combines the outputs of
the first and third branches to form the symbol decision.
In this case the combiner will ignore the outputs coming
from the second and fourth branches.

In GSC the branch SNRs are gamma distributed be-
cause the envelopes are assumed to be Nakagami-m dis-
tributed. This can be easily verified through a random
variable transformation taking into account that the SNR
is proportional to the square of the envelope. With GSC,
predetection [27] or postdetection [28] combining may be
employed. If predetection combining is used, the signals
are first combined and then detected. If postdetection com-
bining is used, the signals are detected before combining.
Predetection systems are usually more complex and costly
than postdetection systems, while on the other hand, they
involve less switching transients. Predetection combining
is usually performed at the IF level, hence, sophisticated
circuitry is generally required. This is due to the need to
satisfy the requirement of coherent summation for MRC
and EGC. The reference signal for phase comparison can
be either one of the incoming signals, or the combined
signal itself. Postdetection receivers are usually much sim-
pler to implement; because no combining at the IF level is
required.

Branch SNRs (e.g., rake fingers in the case of frequency
diversity) are generally correlated. In the case of antenna
diversity this is caused by spacing constraints of the an-
tennas. Signals rk(t) and r l(t) received by two different
antennas are said to be uncorrelated if they satisfy the
relation:

E[rk(t)r
∗
l (t)] = E[rk(t)]E[r

∗
l (t)] (1)

This is the result of, but does not constitute a sufficient
condition for, the two signals being statistically indepen-
dent. Antenna spacing can theoretically be adjusted so
that the signals have no mutual dependence, and hence,
satisfy (1). However, practical implementation usually falls
short of achieving this condition.

It should be emphasized here that the receiver bases
its symbol decisions on the set of received (random) signals
over its antennas. Branch correlation means that signal
quantities received by different antennas cannot be statis-
tically independent. The basic difference this makes in the
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analysis is that for correlated random quantities the joint
density and distribution functions cannot be expressed as
products of marginal density and distribution functions.
Additionally, the SNRs are generally different (branches
are unbalanced). This is due to the specific antenna geom-
etry used and the difference in signal arrival times resulting
from different path lengths.

The development of a direct relation between the
statistics of the output of a GSC system and the statistics
of its input offers an indispensable tool for the error rate
performance analysis of wireless systems. The problem of
obtaining the joint probability density function (PDF) of
the L maxima based on the N -variate joint PDF of the
combiner inputs is a non-classical order statistics problem
in which the input random variables are generally corre-
lated and non-identically distributed. Previous related re-
search dealt mostly with uncorrelated input random vari-
ables [29].

2. Derivation of the L Maxima Joint Statistics

The statistics of the output L maxima will be derived
based on the cumulative density function (CDF) of the
input random variables, i.e., the SNR random variables
available at the outputs of all diversity branches. Let’s
denote the N correlated non-identically distributed input
SNR random variables by the vector X = [X1, X2, . . . , XN ]
with a joint PDF fX(x1, x2, . . . , xN ) and a joint CDF
FX(x1, x2, . . . , xN ). The CDF of the first maximum Y1 is
given by:

FY1(y1) = Pr{Y1 ≤ y1}
= Pr{max1(X1, X2, . . . , XN ) ≤ y1} (2)

= Pr{(X1 ≤ y1) ∩ (X2 ≤ y1) ∩ · · · ∩ (XN ≤ y1)}

where the notation maxi(·) is being used to denote the ith
maximum. This simply means that there are i− 1 random
variables that are larger than maxi(·). More compactly,
(2) can be rewritten in the form:

FY1(y1) = FX (y1, y1, . . . , y1) (3)

Note that there are N y1’s in the argument of FX(·)
in (3). As an illustration, let’s assume N =4. In this case
the CDF in (3) is equal to the probability that the largest
random variable, which we call Y1, is smaller than a value
y1. This is simply equal to the probability that all four
random variables are smaller than y1. Mathematically:

FY1(y1) = Pr {X1 < y1, X2 < y1, X3 < y1, X4 < y1} (4)

The joint CDF of the first two maxima is:

FY1Y2(y1, y2)

= Pr {(Y1 ≤ y1) ∩ (Y2 ≤ y2)}

= Pr

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max1(X1, X2, . . . , XN ) ≤ y1

∩

⎛
⎜⎜⎜⎜⎜⎜⎝

N⋃
(i1, i2, . . . , iN−1) = 1
i1 �= i2 �= · · · �= iN−1

max2(Xi1 , xi2 , . . . , XiN−1 ) ≤ y2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)

Alternatively:

FY1Y2(y1, y2)

= Pr

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N⋂
j1=1

(Xj1 ≤ y1)

∩

⎛
⎜⎜⎜⎝ N⋃

(i1, i2, . . . , iN−1) = 1
i1 �= i2 �= · · · �= iN−1

N−1⋂
j2=1

(
Xij2

≤ y2
)
⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(6)

The joint CDF FY1Y2(y1, y2) is equal to the probability
that the largest random variable Y1 is smaller than y1,
while the second largest random variable Y2 is smaller than
y2. When N =4, this is equal to the probability that all
four random variable are smaller than y1, while the three
random variables that do not include the largest are all
smaller than y2. Given that the largest random variable
can be any one of the four, we easily find that:

FY1Y2(y1, y2)

= Pr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X1 < y1 ∩X2 < y1 ∩X3 < y1 ∩X4 < y1)

∩

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(X1 < y2 ∩X2 < y2 ∩X3 < y2)

∪ (X1 < y2 ∩X2 < y2 ∩X4 < y2)

∪ (X1 < y2 ∩X3 < y2 ∩X4 < y2)

∪ (X2 < y2 ∩X3 < y2 ∩X4 < y2)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7)

The joint CDF of the first three maxima is:

FY1Y2Y3(y1, y2, y3)

= Pr {(Y1 ≤ y1) ∩ ( Y2 ≤ y2) ∩ (Y3 ≤ y3)}

= Pr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N⋂
j1=1

(Xj1 ≤ y1)

∩

⎛
⎜⎜⎜⎝ N⋃

(i1, i2, . . . , iN−1) = 1
i1 �= i2 �= · · · �= iN−1

N−1⋂
j2=1

(
Xij2

≤ y2
)
⎞
⎟⎟⎟⎠

∩

⎛
⎜⎜⎜⎝ N⋃

(i1, i2, . . . , iN−2) = 1
i1 �= i2 �= · · · �= iN−2

N−2⋂
j3=1

(
Xij3

≤ y3
)
⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)
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Generalizing the above simple cases we get the joint
CDF of the first L maxima in the form:

FY1Y2,...,YL
(y1, y2, . . . , yL)

= Pr

⎧⎨
⎩

L⋂
j=1

(Yj ≤ yj)

⎫⎬
⎭

= Pr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L⋂
l=1

⎛
⎜⎜⎜⎜⎝

N⋃
(i1, i2, . . . , iN−l+1) = 1
i1 �= i2 �= · · · �= iN−l+1

N−l+1⋂
jl=1

(
Xijl

≤ yl

)
⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(9)

This joint CDF is defined over L! regions in the L
dimensional hyperspace corresponding to the different per-
mutations of the L maxima. These permutations represent
the different orderings of the values of the L maxima. To
illustrate this consider the case when we need to evaluate
FY1Y2(α, β) and FY1Y2(β, α). Let’s assume that α>β. Ob-
viously, the second maximum cannot be larger than the
first maximum. However, it cannot be concluded from this
that FY1Y2(β, α) should be identically equal to zero. This
is so because the first and second maxima could be equal
to some two values γ and δ, respectively, where δ <γ <β.

We are seeking the PDF of the L maxima, which can
be determined by differentiating the CDF, i.e.:

fY (y1, y2, . . . , yL) =
∂L

∂y1∂y2 · · · ∂yLFY (y1, y2, . . . , yL)

(10)

As can be easily seen from (10), only those terms in the
CDF expression that depend on all the random variables
y1, y2, . . . , yL are relevant to finding the PDF because
these are the terms that are not zeroed by differentiation.
The condition that the required terms must satisfy is
y1 >y2 > · · · >yL. Removing the irrelevant terms from
FY1Y2,···,YL

(·) in (9), and denoting the remaining function

by F̃Y1Y2,···,YL
(·) we obtain:

F̃Y1Y2,...,YL
(y1, y2, . . . , yL)

= Pr

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N⋃
(i1, i2, . . . , iL−1) = 1
i1 �= i2 �= · · · �= iL−1⎛
⎝ (Xi1 ≤ y1) ∩ (Xi2 ≤ y2) ∩ · · ·

∩ (XiL ≤ yL) ∩ · · · ∩ (XiN ≤ yL)

⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(11)

where {iL, iL+1, . . . , iN} are all distinct and different from
{i1, i2, . . . , iL−1}. When N =4 and L=2 as in (7) the
result is:

F̃Y1Y2 (y1, y2)

= Pr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
{(X1 < y1) ∩ (X2 < y2) ∩ (X3 < y2) ∩ (X4 < y2)}
∪ {(X2 < y1) ∩ (X1 < y2) ∩ (X3 < y2) ∩ (X4 < y2)}
∪ {(X3 < y1) ∩ (X1 < y2) ∩ (X2 < y2) ∩ (X4 < y2)}
∪ {(X4 < y1) ∩ (X1 < y2) ∩ (X2 < y2) ∩ (X3 < y2)}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(12)

Note that in (11), all random variables Xil for l≥L
are compared to yL, not to yl. Using the union formula for
non-mutually exclusive random variables yields:

Pr

{
N⋃
i=1

(Xi)

}

=
N∑
i=1

Pr {Xi} −
N∑
i=1

N∑
j=1
j �=i

Pr {Xi ∩Xj} (13)

+
N∑
i=1

N∑
j=1
j �=i

N∑
k=1
k �=i,j

Pr {Xi ∩Xj ∩Xk} − · · ·

Noting that any number of intersections of the events
in (11) produces a term that is not dependent on all the
random variables, and following the same reasoning used
in deriving (11) we get the new function:

˜̃FY1,...,YL
(y1, y2, . . . , yL)

=
N∑

(i1, i2, . . . , iL−1) = 1
i1 �= i2 �= · · · �= iL−1

Pr

⎧⎨
⎩
⎛
⎝(Xi1 ≤ y1) ∩ (Xi2 ≤ y2) ∩ · · ·
∩ (XiL ≤ yL) ∩ · · · ∩ (XiN ≤ yL)

⎞
⎠
⎫⎬
⎭ (14)

=
N∑

(i1, i2, . . . , iL−1) = 1
i1 �= i2 �= · · · �= iL−1

FXi1Xi2,...,XiL−1XiL
,...,XiN

⎛
⎜⎝y1, y2, . . . , yL−1︸ ︷︷ ︸

L−1

, yL, . . . , yL︸ ︷︷ ︸
N−(L−1)

⎞
⎟⎠

Returning to our main problem of using (10) to de-
termine the joint PDF of the L maxima, we conclude the
manipulations above by writing:

fȲ (y1, y2, . . . , yL) =
∂L

∂y1∂y2 · · · ∂yL F̃Ȳ (y1, y2, . . . , yL)

=
∂L

∂y1∂y2 · · · ∂yL
˜̃FȲ (y1, y2, . . . , yL)

(15)

Therefore, the only region in which the PDF has a non-
zero value is also the region y1 >y2 > · · · >yL. Performing
the differentiation in (15), the PDF is found to be equal to:
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fY (y1, y2, . . . , yL)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂y1∂y2 · · · ∂yL
N∑

(i1, i2, . . . , iL−1) = 1
i1 �= i2 �= · · · �= iL−1

FXi1Xi2 ,...,XiL−1XiL
,...,XiN⎛

⎜⎝y1, y2, . . . , yL−1︸ ︷︷ ︸
L−1

, yL, . . . , yL︸ ︷︷ ︸
N−(L−1)

⎞
⎟⎠ ,

y1 > y2 > · · · > yL

0, otherwise

(16)

where {iL, iL+1, . . . , iN} are all distinct and different from
{i1, i2, . . . , iL−1}. When N =4 and L=2 as in (7) and (12)
the result is:

fY1Y2(y1, y2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2

∂y1∂y2

⎡
⎢⎢⎢⎢⎢⎢⎣

FX (y1, y2, y2, y2)

+FX (y2, y1, y2, y2)

+FX (y2, y2, y1, y2)

+FX (y2, y2, y2, y1)

⎤
⎥⎥⎥⎥⎥⎥⎦, y1 > y2

0, otherwise

(17)

As an application of the PDF derivation based on
(16), let’s use the joint CDF of exponentially correlated
Nakagami-m random variables, given in [30]. To avoid
unnecessarily long expressions, while illustrating the use of
our result, let’s assume N =3 and L=2. The joint CDF
of X = [X1, X2, X3] in this case is given by [30]:

FX1X2X3(r1, r2, r3)

=

(
1− ρ2

)m
Γ(m)

×
∞∑

i1,i2=0

(
1 + ρ2

)−[i1+i2+m]
ρ2(i1+i2)∏2

j=1 ij !Γ(ij +m)
q (r1, r2, r3)

(18)

where ρ is a constant that specifies the exponential cross-
correlation among the elements of X, Γ(·) is the Gamma
function, γ(·) is the incomplete Gamma function and:

q (r1, r2, r3)

= γ

(
i1 +m,

r21
2 (1− ρ2)

)
γ

(
i1 + i2 +m,

r22
2

(
1 + ρ2

1− ρ2

))

× γ

(
i2 +m,

r23
2 (1− ρ2)

)
(19)

Modifying (17) for the case where N =3 and L=2,

fY1Y2(y1, y2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2

∂y1∂y2

⎡
⎢⎢⎢⎣
FX (y1, y2, y2)

+FX (y2, y1, y2)

+FX (y2, y2, y1)

⎤
⎥⎥⎥⎦, y1 > y2

0, otherwise

(20)

Applying (20) to (18), we find that for y1 >y2:

fY1Y2(y1, y2)

=
(1− ρ2)m

Γ(m)

∞∑
i1,i2=0

(1 + ρ2)−[i1+i2+m]ρ2(i1+i2)∏2

j=1
ij !Γ (ij +m)

× ∂2

∂y1∂y2
[q(y1, y2, y2) + q(y2, y1, y2) + q(y2, y2, y1)]

(21)

Defining:

b1 = i1 +m

b2 = i1 + i2 +m

b3 = i2 +m (22)

c1 =
1

2(1− ρ2)

c2 =
1 + ρ2

2(1− ρ2)

and performing the differentiations in (21), we obtain after
some manipulation:

fY1Y2(y1, y2)

=
4(1− ρ2)m

y1y2Γ(m)

∞∑
i1,i2=0

(1 + ρ2)−[i1+i2+m]ρ2(i1+i2)∏2

j=1
ij !Γ(ij +m)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

((c1y
2
1)

b1(c2y
2
2)

b2e−(c1y
2
1+c2y

2
2)

+(c2y
2
1)

b2(c1y
2
2)

b1e−(c2y
2
1+c1y

2
2))γ(b3, c1y

2
2)

+ ((c2y
2
1)

b2(c1y
2
2)

b3e−(c2y
2
1+c1y

2
2)

+(c1y
2
1)

b3(c2y
2
2)

b2e−(c1y
2
1+c2y

2
2))γ(b1, c1y

2
2)

+ ((c1y
2
1)

b1(c1y
2
2)

b3

+(c1y
2
1)

b3(c1y
2
2)

b1)e−c1(y
2
1+y2

2)γ(b2, c2y
2
2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

For the special case of independent but non-identically
distributed input random variables, (16) becomes:
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fY (y1, y2, . . . , yL)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
(i1, i2, . . . , iL−1) = 1
i1 �= i2 �= · · · �= iL−1

fXi1
(y1)fXi2

(y2) · · · fXiL
(yL)

N∏
j=L

FXij
(yL),

y1 > y2 > · · · > yL

0, otherwise

(24)

where {iL, iL+1, . . . , iN} are all distinct and different from
{i1, i2, . . . , iL−1}. This agrees with the expression derived
in [29]. Specializing this for the N =3 and L=2 case:

fY1Y2(y1, y2)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fX1(y1)fX2(y2)fX3(y2)FX2(y2)FX3(y2)

+ fX1(y2)fX2(y1)fX3(y2)FX1(y2)FX3(y2)

+ fX1(y2)fX2(y2)fX3(y1)FX1(y2)FX2(y2),

y1 > y2

0, otherwise

(25)

To summarize, we can use (16) to determine the joint
PDF of the output L maxima of N correlated unbalanced
(non-identically distributed) input random variables based
on the joint CDF of the input N random variables. A
good application where (16) can be very useful is in the
performance analysis of WCDMA systems deploying GSC
in a generalized fading channel with arbitrary correlation
and unbalance between the diversity branches.

3. Conclusion

We derived what is – to the best of our knowledge – a
novel direct analytical relation between the statistics of
the GSC scheme output and input SNR random variables.
The novelty of this relation lies basically in the fact that
we have allowed the involved decision random variables to
be correlated. There were no restrictions on the nature of
this correlation, however. This makes the results of this
research more general, and facilitates their use in a wide
variety of problems. The formula derived in this paper
is very useful in the performance study of wireless com-
munication systems deploying GSC as a tradeoff between
implementation complexity and near optimal receiver per-
formance. An example has been provided to demonstrate
the use of the new formula.
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