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Exact Moments of Filtered Laser Phase Noise
Mohammad M. Banat, Senior Member, IEEE

Abstract—In this paper, we derive an exact finite power series
expression of the nth-order moment of a complex filtered phase
noise random variable. This random variable is usually encoun-
tered in the error probability analysis of coherent heterodyne
optical receivers. The result is then used to derive an infinite
power series expression for the moment generating function of
the same random variable. The two expressions represent a novel
full statistical characterization of filtered phase noise. They also
constitute an important step toward deriving optimal heterodyne
receiver designs in the presence of phase noise. In a previous work
by Banat (J. Opt. Commun., vol. 5, no. 6, pp. 267–271, Dec. 2004),
the author presented an approximate finite power series moment
expression for filtered laser phase noise. The new results will be
compared to those of Banat.

Index Terms—Heterodyne optical receivers, laser phase noise,
statistical characterization.

I. INTRODUCTION

S EMICONDUCTOR laser phase noise is one of the major
sources of performance degradation of heterodyne optical

communication receivers [2]–[5]. A lot of literature exists on
the design and analysis of heterodyne optical receivers. Most of
this literature, however, assumes matched filter receiver mod-
els (or, equivalently, correlators or integrate-and-dump filters).
These receiver designs are based on the principle of maximum
likelihood and are known to be optimal in additive white
Gaussian noise, i.e., in the absence of laser phase noise [6].
A brief literature review of optical receiver performance in the
presence of laser phase noise can be found in [7].

Nicholson [2] and Jacobsen and Garrett [8] analyzed the
differential phase-shift keying bit error rate (BER), including
the effects of phase noise. In [4], the authors evaluated the
phase-shift keying (PSK) BER degradation due to transmitter
spectral spread caused by phase noise. Amplitude-shift keying
and frequency-shift keying (FSK) phase noise performances
were studied in [9] and [10], respectively. Accounting for
phase noise effects in receiver performance evaluations leads
to receiver decision variables that include multiplicative phase
noise random factors [7], [11]. These factors are due to the
application of the phase noise corrupted received signal to a
matched filter. The name “filtered phase noise” will be used to
refer to these random phase noise multiplicative factors. It is
believed that an analytical expression for filtered phase noise
moments represents a significant step toward a full analyti-
cal statistical representation of filtered phase noise. It is also
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believed that these can be very helpful in performance studies
of heterodyne optical receivers.

Statistical characterization of filtered phase using a simu-
lation technique that is based on a Brownian motion model
was studied in [12]. A small-phase noise moment generating
function (MGF) approximation was also derived in [12]. The
probability density function (pdf) of the magnitude of filtered
phase noise was found in [13] by numerically solving the
Fokker–Planck differential equation. Analytical manipulations
of Fokker–Planck-based partial differential equations were used
in [14] to derive joint moments of the real and imaginary
parts of filtered phase noise. Even ordered moments of the
magnitude of filtered phase noise were also found in [14]. In
[15] and [16], an exact analytical solution is provided for the
Fokker–Plank equation. The solution provides the pdf of the
phase noise-affected signal envelope in the form of an infinite
series summation. A recursive formula for filtered phase noise
moments was found in [17]. Other works on finding various
moments of decision variables involving filtered phase noise
quantities can be found in [18] and [19].

In a previous work [1], the author presented an approximate
closed-form moment expression for filtered laser phase noise.
In this paper, we present exact expressions of moments of
filtered phase noise random variables in heterodyne optical
receivers that use coherent demodulators. It is well known that
knowledge of all moments of a random variable is equivalent
to knowledge of its pdf. Hence, these expressions are presented
as a novel full statistical characterization of filtered phase noise
random variables.

The remainder of this paper is organized as follows: In
Section II, we define the filtered phase noise random variables
under study and give a sample application. In Section III,
we derive the new moments and the MGF of filtered phase
noise random variables. Some sample moments are listed in
Section IV. Graphical results and comparisons are presented in
Section V. Conclusions are given in Section VI.

II. FILTERED PHASE NOISE RANDOM VARIABLES

Let us start by defining the complex filtered phase noise
random variable

η =
1
T

T∫
0

ejθ(t)dt (1)

where θ(t) is a laser phase noise process, and T is some inte-
gration interval. This random variable appears in the receiver
error probability analysis of heterodyne optical fiber commu-
nication systems that use coherent demodulation. Specifically,
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Fig. 1. Heterodyne optical receiver.

this random variable appears when the low-pass equiva-
lent methods are applied in the derivation of receiver error
probability.

As a sample application where a random variable like η can
be encountered, consider a binary on–off keying (OOK) system
in which the transmitted signal is given by

Es(t) =
{
As cos [2πfst+ θs(t)] , “1”
0, “0”

(2)

where As, fs, and θs(t) are, respectively, the amplitude, the
center frequency, and the laser phase noise process of the
transmitted optical field. The received optical field is applied to
the OOK heterodyne receiver shown in Fig. 1. The local laser
field is given by

Elo(t) = Alo cos [2πflot+ θlo(t)] (3)

where Alo, flo, and θlo(t) are, respectively, the amplitude, the
center frequency, and the laser phase noise process of this field.
The detected current is usually given by

i(t) = LP
{
|Es(t) + Elo(t)|2

}
+ in(t) (4)

where LP{·} denotes the low-pass equivalent, and in(t) is a
zero-mean white Gaussian noise process that is generated by
the photodetector and other circuits that may be present in
the receiver. Note that in(t) will, generally, consist of shot
noise and thermal noise components. However, in heterodyne
systems, the amplitude of the local laser field Alo is usually
large enough for thermal noise to be ignorable. In other words,
it can be assumed that shot noise is dominant. Substituting for
the fields and simplifying, i(t) can be written in the form

i(t) =



i1(t) = A2

s+A2
lo

2 +AsAlo

× cos [2πfht+ θh(t)] + in1(t), “1”

i0(t) = A2
lo
2 + in0(t), “0”

(5)

where the heterodyne intermediate frequency fh = flo − fs,
the heterodyne phase noise process θh(t) = θlo(t) − θs(t), and
the quantities in1(t) and in0(t) are zero-mean white Gaussian
receiver noise currents. Due to the dominance of shot noise,
both in1(t) and in0(t) have the same variance [5]

σ2
in1

= σ2
in0

= σ2
n =

A2
lo

2
. (6)

Laser phase noise processes θs(t), θlo(t), and θh(t) are usually
modeled as Wiener–Levy random processes with linewidths

Fig. 2. OOK low-pass equivalent demodulator.

βs, βlo, and βh, respectively. Therefore, any one of the three
processes can be written in the form [5]

θ(t) = 2π

t∫
0

ζ(τ)dτ (7)

where ζ(t) is a zero-mean white Gaussian random process with
double-sided power spectral density β/2π. The quantity β is
the phase noise full-width at half-maximum linewidth and is
equal to βs, βlo, or βh, depending on the specific phase noise
process. It can be easily found from (7) that θ(t) is a zero-
mean nonstationary Gaussian random process with variance
σ2 = 2πβt. It can also be shown that σ2

h = σ2
s + σ2

lo, and
hence, β2

h = β2
s + β2

lo. Note that subscripts h, s, and lo refer
to θh(t), θs(t), and θlo(t), respectively.

To facilitate the use of the low-pass equivalent method in
determining the error probability, let us consider the OOK
demodulator block diagram shown in Fig. 2, where the input
low-pass equivalent detected current is given by

ĩ(t) =
{
ĩ1(t) = AsAloe

j[2πfht+θh(t)] + ĩn1(t), “1”
ĩ0(t) = ĩn0(t), “0”

(8)

where ĩn1(t) and ĩn0(t) are the low-pass equivalents of the
bandpass parts of in1(t) and in0(t), respectively. Both ĩn1(t)
and ĩn0(t) are zero-mean Gaussian with variances equal to A2

lo.
Note that the constant terms in i(t) do not have a bandpass
component, and hence, they do not contribute to ĩ(t). It can be
easily shown that the decision variable V in Fig. 2 is given by

V =
{
mηh + In1, “1”
In0, “0”

(9)

where In1 and In0 are zero-mean Gaussian random variable
with variances

σ2
In1

= σ2
In0

= σ2
In

=
m

2
. (10)

The filtered phase noise random variable ηh is identical to
η in (1), when θh(t) is substituted for θ(t). This completes
our example of a typical situation where the random variables
under study in this paper can appear. Examples based on PSK,
quadratic-amplitude modulation, FSK, and other modulation
techniques can be constructed very similarly.

III. MOMENTS OF FILTERED PHASE NOISE

RANDOM VARIABLES

The derivation we present in this section improves on the
results of [1] in the sense that here, we use only exact relations.
As will be seen in Section V, there is a visible difference
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between the results obtained through the exact procedure in
this paper and those obtained through the approximate proce-
dure in [1].

It was shown in [5], [7], [20], and [21] that the statistics
of filtered phase noise random variables similar to the one in
(1) are dependent on βT , which is the laser linewidth duration
product (LDP). Hence, such statistics must also be dependent
on ρ, which is the linewidth duration factor given by

ρ = πβT. (11)

The modified symbols η(ρ) and θρ(t) will be used from now
on to signify this dependence. The nth-order moment of η(ρ) is
given by

µn(ρ) = E [ηn(ρ)] = E







1
T

T∫
0

ejθρ(t)dt




n 
 . (12)

Note that the nth power of the integral in (12) can be written in
the form of an n-fold integral as follows:

µn(ρ)=E


 1
Tn

T∫
0

ejθρ(t1)

T∫
0

ejθρ(t2) · · ·
T∫

0

ejθρ(tn)dtn · · · dt2dt1


.

(13)

The integration in (13) is performed over the hypervolume
spanned by 0 ≤ t1, t2, . . . , tn ≤ T . Note that this hyper-
volume can be partitioned into n! subhypervolumes, where a
typical one of which is defined by 0 ≤ tn ≤ tn−1, 0 ≤ tn−1 ≤
tn−2, . . . , 0 ≤ t1 ≤ T . All such n! subhypervolumes can be
obtained by reordering the variables t1, t2, . . . , tn. Since the
integrand has the same form in all variables, it should be
possible to evaluate the integration over only one of the sub-
hypervolumes and multiply the result by n!. This results in

µn(ρ)=E


n!
Tn

T∫
0

ejθρ(t1)

t1∫
0

ejθρ(t2) · · ·
tn−1∫
0

ejθρ(tn)dtn · · · dt2dt1


.

(14)

Making use of

E
[
ejθρ(t)

]
= e−πβt (15)

and successively carrying out the integration process in (14),
we obtain

µn(ρ) =
n!
Tn

T∫
0

t1∫
0

· · ·
tn−1∫
0

e
−πβ

n∑
k=1

aktk

dtn · · · dt2dt1 (16)

where

ak = 2k − 1. (17)

The structure in (16) allows for the integration to be evaluated
as a recursion by noting that we can write

µn(ρ) = gn(ρ, T ) (18)

where

gn(ρ, t0) =
n

T

t0∫
0

e−πβa1t1gn−1(ρ, t1)dt1 (19)

and, in general

gi(ρ, tn−i)=
i

T

tn−i∫
0

e−πβan−i+1tn−i+1gi−1(ρ, tn−i+1)dtn−i+1.

(20)

Note that

g0(ρ, tn) = 1. (21)

Laplace-transforming (20) over the variable tn−i, we obtain

Gi(ρ, s) =
i

sT
Gi−1(ρ, s+ πβan−i+1). (22)

This can be repeated for all values of i untilGn(ρ, s) is obtained
to be equal to

Gn(ρ, s) =
n!
Tn

n∏
m=0

1
s+ bm

(23)

where

bm = πβm2. (24)

Applying the inverse Laplace transform to (23) with respect to
the variable s, we obtain

gn(ρ, t) =
n!
Tn

n∑
m=0

cn,me
−m2πβt (25)

where

cn,m =
1

(πβ)n
n∏

k=0
k �=m

(k2 −m2)
. (26)

Finally, using (18) to substitute T for t, we can write an
expression for the nth-order moment of η(ρ) in the form

µn(ρ) =
n!
ρn

n∑
m=0

dn,me
−m2ρ (27)

where

dn,m =
1

n∏
k=0
k �=m

(k2 −m2)
=

(−1)m2
(n−m)!(n+m)!

. (28)
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Based on this result, the MGF of η(ρ) can be written as an
infinite power series in terms of the moments of η(ρ). The MGF
may, therefore, be expressed as

Ψη(s) = E
[
esη(ρ)

]
=

∞∑
n=0

µn(ρ)
n!

sn. (29)

Now, substituting for µn(ρ) using (27), we obtain

Ψρ(s) =
∞∑

n=0

(
s

ρ

)n n∑
m=0

dn,me
−m2ρ. (30)

IV. SOME SAMPLE MOMENTS

The first moment of η(ρ) can be found by substituting n = 1
in (27) to obtain

µ1(ρ) =
1
ρ
(1 − e−ρ). (31)

Note that this is exactly the same expression that can be found
by direct evaluation of the mean value of η(ρ) using (1) [1],
[5], [20], [21]. Substituting n = 2 in (27) shows that the second
moment of η(ρ) is equal to

µ2(ρ) =
1

6ρ2
(3 − 4e−ρ + e−4ρ). (32)

This is identical to the expression in [1]. The third moment of
η(ρ), which is obtained from (27), is

µ3(ρ) =
1

60ρ3
(10 − 15e−ρ + 6e−4ρ − e−9ρ). (33)

This is somehow different from the same moment that was
derived in [1], which is given by

µ3,approx(ρ) =
1

72ρ3
(16 − 27e−ρ + 12e−3ρ − e−9ρ). (34)

The difference between the two results is not quite substantial.
This will be illustrated graphically in Section V.

V. RESULTS

The nth-order moment of η(ρ) has been plotted in Fig. 3
as function of n for several values of the LDP. Note that
the curves have been presented as connected lines in order to

Fig. 3. nth-order mean of filtered phase noise for several values of the LDP.

Fig. 4. nth-order mean of filtered phase noise as function of the LDP for
several values of n.

make visible the general trend in these curves as n is varied.
The data points are indicated using markers. Obviously, the
moments get smaller as the LDP gets larger. This observation
is extremely important because it is well known that η(ρ) (or a
related quantity) usually multiplies the signal term at the input
of the symbol (or bit) decision circuitry in the receiver; see (9)
for an example. Hence, a larger LDP results in smaller multi-
pliers, leading to more frequent errors in the decision process.
Furthermore, and because of this trend, if the moments are to
be used in calculating the MGF of η(ρ), then fewer moments
are needed as the LDP gets larger. Finally, all curves in Fig. 3
are approximately linear curves. Noting that the vertical axis is
logarithmic leads to a general conclusion that the dependence
of the moments on n has a decaying exponential nature.

In Fig. 4, we plot the nth-order moment of η(ρ) as a
function of the LDP for several values of n. As was the case
above, moments are seen to decrease with increasing n or LDP.
However, exponential dependence of the moments on the LDP
is somewhat less obvious than that on n.
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Fig. 5. nth-order mean of filtered phase noise for several values of the LDP.
Comparison with the results of [1].

Fig. 6. nth-order mean of filtered phase noise as function of the LDP for
several values of n. Comparison with the results of [1].

In Figs. 5 and 6, we compare the exact moments as given by
(27) with those found through the approximate method in [1]. It
can be easily seen from these two figures that there is a visible
difference between the two methods for moments other than
the first. Specifically, it is clear that the approximate method
always produces higher moments than the exact method. Based
on our discussions of Figs. 3 and 4 above, this is a form of
underestimation of the effect of phase noise multiplying factors
in optical receivers. This is certainly a good justification for the
use of the new exact method rather than approximate methods
in as many situations as possible.

VI. CONCLUSION

This paper has presented a new exact finite power series
expression of the nth-order moment of a complex filtered
phase noise random variable that is encountered in the error
probability analysis of coherent heterodyne optical receivers.

The result was used to derive an infinite power series ex-
pression for the MGF of the same random variable. The two
expressions represent a novel full statistical characterization
of filtered phase noise. Various moments calculated using the
new expression were plotted and compared to corresponding
moments calculated using an approximate method published
earlier by the author. Comparison results demonstrate visible
differences between the two methods, emphasizing the need for
the new exact method.
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