
Performance analysis of a symbol slicing majority
vote combining receiver for binary optical heterodyne
ASK with phase-noise-optimised decision thresholds

M.M. Banat

Abstract: The performance of a binary optical heterodyne ASK receiver in the presence of photo-
detector shot noise and laser phase noise has been investigated. To reduce the effects of phase noise
on the receiver error rate, the maximum likelihood approach is used to optimise the decision
threshold on the basis of the severity of phase noise indicated by the laser linewidth. It is
assumed that the receiver uses symbol slicing and majority vote decision combining. Threshold
optimisation is applied to each slice (chip) of the received bit duration. It is found that the receiver
performance can be significantly improved by threshold optimisation. Majority voting is also found
to improve the receiver performance for a wide range of signal-to-noise ratio values.

1 Introduction

The performance of heterodyne optical communication
receivers can be significantly degraded by semiconductor
laser phase noise [1–4]. Existing heterodyne receivers are
mostly based on matched filter models (or equivalently, cor-
relators or integrate-and-dump filters) which are known to
be optimal in additive white Gaussian noise (AWGN),
that is in the absence of laser phase noise [5]. A brief litera-
ture review of optical receiver performance in the presence
of phase noise can be found in Banat and Awad [6].

We investigate the performance of a binary optical het-
erodyne ASK receiver in the presence of photodetector
(PD) shot noise (this noise is available at the electrical
output of the PD, and hence, is different from additive
optical noise that may be added by an optical preamplifier)
and laser phase noise. PD shot noise is known to be AWGN.
Therefore receiver optimisation against this kind of noise
follows conventional matched filter models vastly used in
the literature. However, laser phase noise is not AWGN.
In fact, it is not even additive. The maximum a posteriori
approach cannot be directly applied to the design of
phase-noise-optimum receivers because of mathematical
intractability. This is the main reason why most existing
literature related to receiver optimisation starts with a
matched filter model. In many cases, this model is even
used without any modification. When we start with a
matched filter-based receiver, the phase noise effect mani-
fests itself in the form of a random multiplicative noise
which has no analytical probability density function [7–9].

In an earlier work, Banat and Awad [6] introduced the use
of symbol slicing and majority vote combining to a binary
non-coherent FSK receiver in an attempt to improve the
system performance in the presence of laser phase noise.

The proposed receiver in Banat and Awad [6] was found
to perform better than the receivers based on whole symbol
decisions. Symbol slicing and majority vote combining will
be used in this paper in a binary coherent ASK receiver,
which is usually severely affected by laser phase noise.

To reduce the effects of phase noise on the receiver error
rate, we use the maximum likelihood approach to optimise
the decision threshold based on the severity of phase noise
measured by the laser linewidth. The receiver uses symbol
slicing and majority vote decision combining. In this
configuration, the received symbol duration T is split into
L chips each of duration Tc ¼ T/L. A binary decision is
made on each chip. On the basis of the chip decisions, a
symbol decision is made in favour of the symbol with a
majority of chip decisions in its favour. Threshold opti-
misation is applied to each slice (chip) of the received bit
duration. It is found that the receiver performance can be
significantly improved by threshold optimisation. Majority
voting is also found to improve the receiver performance
for a wide range of signal-to-noise ratio values.

2 System model

In a binary ASK system, the transmitted signal can be
written in the form

sðtÞ ¼
s1ðtÞ ¼ As cos½2pfst þ usðtÞ�; ‘1’

s0ðtÞ ¼ 0; ‘0’

�
ð1Þ

where As is the signal amplitude, assumed to be constant,
fs is the optical carrier frequency and us(t) is a Wiener–
Levy laser phase noise process, having a linewidth equal
to bs. A heterodyne receiver first adds the incoming
signal s(t) to a locally-generated signal slo(t) then applies
the sum signal to a PD, which produces a current i(t).
This process is illustrated in Fig. 1. The local signal will
be assumed to have the form

sloðtÞ ¼ Alo cos½2pflot þ uloðtÞ� ð2Þ

where Alo and flo are the local laser signal amplitude and fre-
quency, respectively, while ulo(t) is its phase noise process,
assumed to be Wiener–Levy with linewidth blo. Phase
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noise processes us(t) and ulo(t) will be assumed to be
representable in the form

uðtÞ ¼ 2p

ðt

0

zðtÞdt ð3Þ

where z(t) is a zero-mean white Gaussian random process
with double-sided power spectral density bs/2p for us(t),
and blo/2p for ulo(t).

Without loss of generality, we’ll ignore the proportional-
ity constants involved in the PD optical-to-electrical
conversion process. Hence, the PD output current will be
given by

iðtÞ ¼ LPfjsðtÞ þ sloðtÞj
2g þ xðtÞ

¼
i1ðtÞ; when a ‘1’ is transmitted

i0ðtÞ; when a ‘0’ is transmitted

�
ð4Þ

where LP(.) denotes the familiar low pass operator. If a
‘1’ is transmitted the PD current is given by

i1ðtÞ ¼ LPfjs1ðtÞ þ sloðtÞj
2g þ x1ðtÞ

¼ Idc;1 þ AloAs cos½2pfht þ uhðtÞ� þ x1ðtÞ ð5Þ

where

Idc;1 ¼
A2

s þ A2
lo

2
ð6Þ

and fh is the heterodyne frequency given by

fh ¼ flo � fs ð7Þ

uh(t) ¼ ulo(t) 2 us(t) will be termed the heterodyne phase
noise. Owing to the statistical independence of us(t) and
ulo(t), it can be easily shown that uh(t) satisfies (3) with a
linewidth equal b ¼ bloþ bs. The PD shot noise current
x1(t) is AWGN with power spectral density [4] equal to
Alo

2 /2.
When a ‘0’ is transmitted the PD current is given by

i0ðtÞ ¼ LPfjsloðtÞj
2g þ x0ðtÞ

¼ Idc;0 þ x0ðtÞ
ð8Þ

where

Idc;0 ¼
A2

lo

2
ð9Þ

and x0(t) is AWGN with power spectral density [4] equal
to Alo

2 /2. The symbol slicing receiver performs a matched
filtering operation on each chip, as shown in Fig. 2. The
result is the chip decision variable Vk. This process is

repeated for all k ¼ 1, 2, . . . , L. Each decision variable is
then compared to a threshold Vth,k to make a chip decision
dk. The chip decisions are made according to the rule

Vk

‘1’

.
,
‘0’

Vth;k ð10Þ

Chip decision thresholds fVth,kg will be derived so that
chip decisions are optimum in the maximum likelihood
sense. Note that effects like pulse shaping, time jitter and
eye closure are not taken into account. Would such effects
be considered, chip error rate performance would naturally
tend to deteriorate. Once all L chip decisions have been
made, a symbol decision is made in favour of the symbol
with more chip decision in its favour. That means, for
example, that ‘1’ is decided if at least (Lþ 1)/2 ‘1’ chip
decisions have been made. Note that, to avoid cases of
indecision, L will always be chosen to be odd.

The chip decision variable Vk can be easily found to be
equal to

Vk ¼
mchk þ X1;k; ‘1’

X0;k; ‘0’

�
ð11Þ

where mc is the chip energy and hk is a filtered phase noise
random variable. mc and hk are given by

mc ¼
A2

s Tc

2
ð12Þ

hk ¼
1

Tc

ðkTc

ðk�1ÞTc

cos½uhðtÞ� dt ð13Þ

The noise output of the PD is given by

Xl;k ¼
As

Alo

ðkTc

ðk�1ÞTc

xlðtÞ cosð2pfhtÞ dt; l ¼ 0; 1 ð14Þ

It can be easily shown that Xl,k has a variance s2 ¼ mc/2 for
l ¼ 0, 1.

3 Error probability derivations

To determine the bit error probability we first use the total
probability theorem to find the chip probability of error,
that is

PkðeÞ ¼
1

2
½Pkðe=1Þ þ Pkðe=0Þ� ð15Þ

where Pk(e/1) and Pk(e/0) are used to denote chip error
probabilities conditioned on the transmission of a ‘1’ or ‘0’,
respectively. After the chip decisions are made, a bit
decision is made based on majority voting. A bit error
occurs if a majority of chip decisions are wrong, that is

PðeÞ ¼
XL

l¼ðLþ1Þ=2

L

l

� �
ðPkðeÞÞ

l
ð1� PkðeÞÞ

L�l
ð16Þ

Note that owing to the unavailability of analytical PDF’s
of fhkg, we will need to initially find chip error probabilities
Pk(e/h) that are conditional on fhkg. This is done through
a slight modification to (15) that takes into account the
conditioning on fhkg that is

PkðejhÞ ¼
1

2
½Pkðe=1;hÞ þ Pkðe=0;hÞ� ð17Þ

Fig. 2 Chip decision circuit

Fig. 1 Heterodyne detector
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Then, by means of a similar modification to (16), the con-
ditional bit error probability P(e/h) is found according to

Pðe=hÞ ¼
XL

l¼ðLþ1Þ=2

L

l

� �
½Pkðe=hÞ�

l
½1� Pkðe=hÞ�

L�l
ð18Þ

The unconditional bit error probability is found by
numerically averaging P(e/h) over the phase noise
random variables fhkg.

3.1 Probability of error with no threshold
optimisation

To appreciate the performance advantage gained by
threshold optimisation we will start by assuming that no
such optimisation has been applied, so that Vth ¼ mc/2
(this is what is usually done when phase noise is not present)

Pkðe=hÞ ¼
1

2
Pr mchk þ X1;k ,

mc

2

n oh
þ Pr X0;k .

mc

2

n oi
ð19Þ

The last result can be easily translated into

Pkðe=hÞ ¼
1

2
Pr X1;k . ð2hk � 1Þ

mc

2

n oh
þ Pr X0;k .

mc

2

n oi
ð20Þ

which finally results in

PkðejhÞ ¼
1

2
Q ð2hk � 1Þ

ffiffiffiffiffiffi
mc

2

r� �
þ Q

ffiffiffiffiffiffi
mc

2

r� �� �
ð21Þ

where Q(.) is the well known Q function, defined by

QðxÞ ¼
1ffiffiffiffiffiffi
2p
p

ð1

x

e�u2=2 du ð22Þ

3.2 Probability of error with threshold
optimisation

Let us now set the chip decision thresholds to

Vth;k ¼ ak

mc

2
ð23Þ

where fakg are a group of positive constants that will
be referred to as the threshold scale factors. With this
modification, the chip error probabilities given in (19) are
replaced by

Pkðe=hÞ ¼
1

2
Pr mchk þ X1;k , ak

mc

2

n oh
þ Pr X0;k . ak

mc

2

n oi
ð24Þ

which leads to

PkðejhÞ ¼
1

2
Q ð2hk � akÞ

ffiffiffiffiffiffi
mc

2

r� �
þ Q ak

ffiffiffiffiffiffi
mc

2

r� �� �
ð25Þ

Making use of the fact that

d

dx
QðxÞ ¼ �

1ffiffiffiffiffiffi
2p
p e�x2=2 ð26Þ

we can write

d

dak

PkðejhÞ ¼
�1

2
ffiffiffiffiffiffi
2p
p �

ffiffiffiffiffiffi
mc

2

r
e�mcð2hk�ak Þ

2=4þ

ffiffiffiffiffiffi
mc

2

r
e�mca

2
k
=4

� �

ð27Þ

Equating to zero and taking the expected value over hk

yields

E½e�mchk ðhk�ak Þ� ¼ 1 ð28Þ

4 Results

Let us begin by defining the linewidth duration product
(LDP) as the product of the heterodyne phase noise line-
width b ¼ bloþ bs and the bit duration T. Larger values
of the LDP indicate more severe phase noise. We first
studied the behaviour of the optimum threshold scale
factors fakg as function of m, the received energy per bit.
Fig. 3 shows this behaviour when L ¼ 1. As can be
clearly seen from this figure, the scale factor becomes
smaller as the LDP increases. Hence, the need for threshold

Fig. 3 Optimum threshold scale factor a as function of m
when L ¼ 1

Fig. 4 Bit error probability with and without threshold optimis-
ation for the moderate phase noise case
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optimisation is more pronounced when phase noise is
stronger.

The effect of threshold optimisation on the bit error rate
performance is illustrated by Figs. 4 and 5 for the cases of
moderate (0.1 � LDP �1) and small (0.01 � LDP � 0.1)
phase noise, respectively. Significant bit error rate improve-
ments can be seen, especially at larger values of m. Note
that in the no threshold optimisation curves, the error rate
reaches certain floors as m is increased beyond some
values. This floor effect is drastically reduced by threshold
optimisation, as clarified by Figs. 4 and 5.

Figs. 6 and 7 illustrate the bit error rate improvements
achieved by the use of majority vote combining. Fig. 6
shows a moderate phase noise case (LDP ¼ 1), and Fig. 7
shows a small phase noise case (LDP ¼ 0.1).

The effect of increasing L, the number of chips per bit, on
the error rate performance is shown in Fig. 8. It can be
easily seen that L needs not be increased indefinitely.
Actually, for each value of m there is a value beyond
which increasing L presents too little error rate improve-
ment to justify the resulting receiver complexity increase.
Error rate floors as L becomes large are shown in Fig. 9
for several values of the LDP.

Fig. 6 Bit error probability with threshold optimisation and
majority vote combining for the moderate phase noise case

Fig. 5 Bit error probability with and without threshold optimis-
ation for the small phase noise case

Fig. 7 Bit error probability with threshold optimisation and
majority vote combining for the small phase noise case

Fig. 8 Bit error probability as function of the number of chips
per bit (LDP ¼ 0.1)

Fig. 9 Bit error probability as function of the number of chips
per bit (LDP ¼ 0.1, 0.5, 1.0)
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5 Receiver complexity issues

The use of symbol slicing, threshold optimisation and
majority vote combining have been shown to improve the
system performance. This comes at the cost of an increased
receiver complexity. A breakdown of the needed additional
complexity is as follows (see Fig. 2).

† The variable-limit integrator ((k 2 1)Tc to kTc) can be
easily realised using a digital integrator with programmable
limits. Note that the integration limits are to go through a
periodic cycle of variation over the symbol period.
† The variable-threshold comparator can be designed to
have a programmable threshold that goes through a periodic
cycle of variation over the symbol period. Note that the
thresholds are fixed design parameters that are to be pre-
calculated (see (28)).
† Chip decisions fdkg can be stored in an L-bit buffer. At the
end of a symbol period, a simple logic circuit can perform
the majority vote combining operation.

Taking into account the advanced present state of the art
in digital circuit technology, the complexity load of the
proposed receiver is believed to be acceptable.

6 Conclusions

We have studied the performance of a symbol slicing majority
vote combining ASK receiver with phase-noise-optimised

decision thresholds. Our results confirm that pure matched
filter-based receiver are far from optimum when laser
phase noise is present. Decision threshold optimisation
and majority vote combining were both shown to be
sources of performance improvements.

7 References

1 Nicholson, G.: ‘Probability of error for optical heterodyne DPSK
system with quantum phase noise’, Electron. Lett., 1984, 20, (24),
pp. 1005–1007

2 Henry, C.H.: ‘Phase noise in semiconductor lasers’, J. Lightwave
Technol., 1986, 4, (3), pp. 298–311

3 Kikuchi, K., Okoshi, T., Nagamtsu, M., and Hennmi, N.: ‘Degradation
of bit-error rate in coherent optical communications due to spectral
spread of the transmitter and the local oscillator’, J. Lightwave
Technol., 1984, 2, (6), pp. 1024–1033

4 Einarsson, G.: ‘Principles of lightwave communications’ (John Wiley
& Sons, 1996)

5 Gao, H., Smith, P.J., and Shafi, M.: ‘Improved receivers for coherent
FSK systems’, J. Lightwave Technol., 1998, 16, (11), pp. 1973–1980

6 Banat, M.M., and Awad, S.M.S.: ‘Bit error rate of majority vote
combining symbol slicing noncoherent binary optical heterodyne
FSK receivers’, J. Opt. Commun., 2004, 5, (5), pp. 212–218

7 Banat, M.M.: ‘Statistical characterization of filtered phase noise in
optical receivers’, IEEE Commun. Lett., 2003, 7, (2), pp. 85–87

8 Banat, M.M.: ‘Moment generating functions of filtered phase noise in
heterodyne optical receivers’. IASTED Int. Conf. on Communication
Systems and Networks, Spain, 2003

9 Banat, M.M.: ‘A novel closed form moment expression for filtered
semiconductor laser phase noise’, J. Opt. Commun., 2004, 5, (6),
pp. 267–271

IEE Proc.-Optoelectron., Vol. 153, No. 4, August 2006 173




