
 AUTOREGRESSIVE STOCHASTIC MODELING AND TRACKING OF DOUBLY 
SELECTIVE FADING CHANNELS 

Ala'a D. Abu Al-khair and Mohammad M. Banat 
Jordan University of Science and Technology 

Department of Electrical Engineering 
PO Box 3030, Irbid 22110 

Jordan 
m.banat@ieee.org 

 
 

ABSTRACT 

This paper presents a new autoregressive (AR) stochastic 
modeling and tracking method of doubly selective fading 
channels. The AR model is used to generate a wide-sense 
stationary uncorrelated scattering (WSSUS) channel 
impulse response. A Kalman-based tracking algorithm is 
then designed to continuously track the channel at the 
receiver. 
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1. Introduction 

A wireless communication channel is said to be doubly 
selective when it exhibits both time- and frequency-
selective fading. Such channels are encountered in many 
current applications where communication takes place 
over wide bandwidths, at high carrier frequencies, and 
under high mobility conditions [1]. 
In a typical wideband application, frequency selectivity is 
likely to cause intersymbol interference (ISI); because the 
transmitted signal bandwidth exceeds the channel 
coherence bandwidth [2]. The presence of ISI usually 
requires the use of equalization at the receiver [2]. Time 
selectivity is usually the result of high mobility of the 
communicating device. It manifests itself in the form of 
fast channel time variations [1]. Therefore, a doubly 
selective fading channel is a rapidly time-variant one. 
Therefore, in addition to the need for an equalizer to take 
care of ISI, a fast and accurate tracking algorithm has to 
be implemented to handle the channel time variation [1]. 
Frequency selective fading communication channels are 
generally described using tapped delay line models [2]. 
Contrary to situations that may arise in other applications, 
the channel tracking algorithm, mentioned above, has to 
follow the actual values of the delay line tap coefficients 
rather than their average values. 

A popular approach to incorporate time variations into the 
delay line model is to represent the tap coefficients using 
deterministic time varying basis expansion fucntions (e.g., 
using complex exponentials) [3], [4]. This sort of 
modeling is particularly useful when the multipath is 
mainly caused by a few strong reflectors and when path 
delays exhibit variations due to the kinematics of the 
mobiles [3], [4], [5]. 
A more general approach to describe time-varying 
communication channels is by treating the delay line 
coefficients as lowpass Gaussian uncorrelated stationary 
random processes [1], [2], [6]. This approach is suitable 
for situations where large a number of scatterers exist. 
Our channel modeling and tracking algorithm in this 
paper is based on the more general statistical approach to 
describe the channel tap coefficients. The time evolution 
of each tap coefficient will be modeled as an 
autoregressive (AR) random process. AR modeling of 
time varying channel tap coefficients was first proposed 
in [7].  
Several algorithms have been proposed for the generation 
of Rayleigh random variates [8], [9], [10], [11] that can be 
used to represent the envelopes of the tap coefficients. 
These algorithms can be generally classified to follow 
either the sum-of-sinusoids (SOS) approach or the inverse 
Discrete Fourier Transform (IDFT) approach [12]. It was 
shown in [13] that the classical Jakes’ simulator (which is 
an SOS-based approach) produces fading signals that are 
not wide sense stationary. On the other hand, IDFT-based 
techniques, are known to be storage-demanding, even 
though accurate [12], [14], [15]. It was shown in [1] that 
the AR model can efficiently simulate a WSSUS fading 
channel with an accuracy close to that of the IDFT model 
and with a much less storage requirements. 

2. Fading Channel Modeling 

Consider the following multipath fading channel discrete-
time input/output relation [16] 
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where ( )x n  and ( )y n  are the channel input and output, 
respectively, ( , )h n l  is the channel impulse response as 
function of time n  and delay l , and ( )nξ  is a zero-
mean additive white Gaussian noise (AWGN) process 
with variance 2

ξσ . We are assuming a WSSUS channel. 
In the sequel, we will use the AR model to generate the 
channel taps { }( , )h n l , for 0,1, , 1l L= −L  and 

0,1,n = L . 
Modeling the channel impulse response as an AR process 
means that ( , )h n l  depends on a subset of its previous 
values ( 1, )h n l− , ( 2, )h n l− , , ( , )h n P l−L  as 
follows [17] 
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where P  is the AR model order, 

[ ](1) (2) ( ) T
l l l la a a a P= L  is the channel tap 

coefficient vector, and ( )lu n  is a zero-mean complex 
valued white Gaussian stochastic process, with variance  

2
uσ , that is uncorrelated with ( )nξ  and that has the 

autocorrelation function given by 
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This channel model was used in [1] with a wide sense 
stationary correlated scattering (WSSCS) channel, where 
each tap-vector was a function of the previous P  tap 
vectors. Even though we are using a simplified model by 
assuming uncorrelated scattering, it will be seen later that 
this model allows us to efficiently track the channel 
impulse response time variations.  
Our first objective is to determine a mean-squared-error 
(MSE) optimized estimate of the coefficient vector la . 

Multiplying (2) by ( , )h n k l∗ −  on both sides and taking 
the expected value yields for 0,1,2,...,k P=  [17] 
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where use has been made of the channel autocorrelation 
function defined as 

 ( , ) E ( , ) ( , )hr k l h n l h n k l∗⎡ ⎤= −⎣ ⎦  (5) 

Next, we note that for any 0k > , (4) can be written in 
matrix form as follows 
 ( ) ( )h l hR l a r l⋅ =  (6) 

where 
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and 

 1 2( ) [ ( , ) ( , ) ( , )]Th h h hr l r l r l r P l= L  (8) 

In order to solve for the unknown coefficient vector la , 

we have to calculate the matrix ( )hR l  and the vector 
( )hr l . In [1] this is done through tracking the elements of 

( )hR l  and ( )hr l  using a recursive least squares (RLS) 
algorithm, or using a closed form approximation based on 
higher order statistics to give an estimate of ( , )hr k l  once 
per data block of size N . This procedure has a major 
drawback regarding the first step. The autocorrelation of 
the fading channel is very difficult to track using an 
adaptive algorithm. This is because the channel 
autocorrelation over a window is usually varying faster 
than the convergence time of these algorithms. As will be 
explained later in the paper, we will analytically calculate 

la  using the Bessel function channel correlation model. 

3. Channel Tracking 

Consider the channel tap coefficient vector 

 ( ) [ ( ,0) ( ,1) ( , 1)]Th n h n h n h n L= −L  (9) 

which can be alternatively written in the form 
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where ( )u n  is an L -element vector whose values are 
taken from a complex zero-mean white Gaussian 
stochastic process with variance 2

uσ  [1], i.e., 

 2 ( )u u L LR I k×= σ ⋅ ⋅ δ  (11) 

( )A p  is the diagonal matrix given by: 

 { }1 2( ) diag ( ), ( ), , ( )LA p a p a p a p= L  (12) 

Note that ( )la p  corresponds to the p th coefficient 
associated with the l th tap. Let’s now define the 
augmented channel vector 

 1 1ˆ( ) [ ( ) ( ) ( )]T T T Th n h n h n h n P= − − +L  (13) 

Let’s also make the following two definitions 
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where LI  is an L L×  identity matrix and LΟ  is an 
L L×  matrix of zeros. Using the new definitions above 
we can rewrite (10) in the form [1] 

 1ˆ ˆ( ) ( ) ( )h n A h n J u n= ⋅ − + ⋅  (16) 

Now let’s define the transmitted vector 

 1 1( ) [ ( ) ( ) ( )]Tx n x n x n x n L= − − +L  (17) 

This enables rewriting (1) as follows 

 ( ) ˆ( ) ( ) ( ) ( )Ty n Jx n h n n= + ξ  (18) 

Now, with the aid of (16) and (18), we can use a Discrete 
Kalman filter to track the channel vector ˆ( )h n . In the 
following two subsections present two tracking 
algorithms. 

3.1. Tracing Algorithm-1 

• Initialization: 
Initialize the channel tap coefficient vector to 

0 0ˆ( ) 0h = , where 0  denotes a vector of L  zeros. 
Define the initial matrix 0 0( ) PLQ = Ο , where PLΟ  is 
a PL PL×  matrix of zeros. 
• Recursion: 
for 1 2, ,n = L  compute 

1 1 1ˆ ˆ ˆ( ) ( )h n n Ah n n− = − −  
21 1 1ˆ ˆ( ) ( ) H H
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The matrices ( )Q n n , 1( )Q n n − , and Â  are all 
LP LP×  square matrices, while ( )K n  is an 1LP ×  
gain vector [1], [17]. 
Note that this algorithm allows the calculation of  the 
matrix ( )Q n n  offline. The resulting values can then be 
used when the recursion is run. Hence the amount of 
computations required can be reduced at the cost of some 
storage requirements. 

3.2. Tracing Algorithm-2 

• Initialization: 
1 0ˆ( ) 0h =  
1 0( ) PLE = Ο , where PLΟ  is a PL PL×  matrix of 

zeros. 
• Recursion: 

for 1 2, ,n = L  compute 
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nlike the first algorithm, this algorithm does not involve 
any quantities that can be calculated offline. However, it 
requires fewer computations than the first algorithm. 

4. SIMULATION 

We have used two methods to generate the channel. In the 
first method we used the AR model suggested in [14], 
while in the second one we used the Jakes model given in 
[18, Chapter 3]. The stationarity of the channel generated 
using the AR model was achieved, as in [12], through a 
start-up procedure that is based on the Levinson 
recursion. With the Jakes simulator we have used a total 
of 200 sinusoids that were added at each time instant. 
Since the channel impulse response is modeled as an AR 
process, the receiver should know Â , the coefficient 
matrices of the AR model, before running the Kalman 
channel tracking algorithm. These coefficients will be 
determined using analytical calculation. Assuming a 
symbol period T  and a Doppler spread df , we use the 
Bessel function channel correlation model given by 
 0 2( , ) ( )h dr k l J f kT= π  (19) 

to solve the Yule-Walker equations given in (6). In doing 
so, we can use the Levinson-Durbin recursion to calculate 
the channel tap coefficient vector la  and the variance of 

the white process ( )u n . 
We will study the performance of the tracking algorithm 
in three cases. These cases differ in the amount of 
information available at the receiver. The receiver tracks 
the channel with the aid of the AR model. In doing so, the 
type of channel correlation and the order of the model are 
parameters that shall be specified at the receiver at the 
beginning.  



To study the functionality of the proposed tracking 
procedure, we will gradually decrease the amount of 
information available to the receiver. We have limited our 
simulations to tracking algorithm-1; because algorithm-2 
gives very similar results. 
First we will assume that the receiver knows the type of 
channel correlation and the order used in generating the 
channel using the AR model. Based on this knowledge, 
the receiver uses a model similar to the one used to 
generate the channel in tracking it. Part of the results of 
this experiment are shown in Figure 1 and Figure 2 (the 
remaining results are similar and have been omitted to 
minimize the paper size). The performance of the tracking 
algorithm over the first 500 training symbols is shown. In 
this example, we have generated a 4-tap, WSSUS fading 
channel with a normalized Doppler spread of 

0 03.df T = , and an exponential power delay profile, 

given by 2( ) llT −φ = . The order of the AR model  used 
to generate this channel is 50. As one may expect, the 
tracking algorithm in this case gives almost perfect match 
to the actual channel for all taps.  
Next we relax the requirement that the receiver knows the 
order of the channel model. Hence we arbitrarily select a 
model order and use it in the receiver. Part of the results 
of this case are shown in Figure 3 and Figure 4. We have 
generated a 4-tap channel using a AR(100) model with 
the same power delay profile and normalized Doppler 
spread as in the first case. At the receiver side, we have 
arbitrarily selected a AR(50) model for tracking. Once 
again the performance of the tracking algorithm for the 
first 500 training symbols is shown. As we can see, the 
algorithm is still capable of giving fair results even with 
order mismatches. 
Finally, we have used the Jakes Sum of Sinusoids channel 
simulator to generate a channel with the same power 
delay profile and normalized Doppler spread as before. In 
this case, the receiver must arbitrarily select an order for 
the AR model to use it in the tracking. An AR(20) model 
was selected. The results are shown in Figure 5 and 
Figure 6. Once again the algorithm has proven its 
functionality even though the channel is generated using a 
model other than the AR model. 
Though the tracking performance had suffered some 
degradation from the first to the third experiments, the 
level of performance that the algorithm reaches is 
reasonable for the purpose of channel equalization. This 
can be understood once we note that the degradation is 
mainly in the later taps while the former taps still enjoy 
good tracking. Since the contribution of the former taps in 
the ISI is larger than the  later taps, then we conclude that 
the tracking results are reasonable and are quite good to 
be used for equalization. 

5. Conclusions 

We have investigated the potentials of the autoregressive 
stochastic model in modeling the doubly selective fading 
channel. It was shown that we can use the Bessel function 

channel correlation to solve for the model coefficients; 
and thus to generate the WSSUS channel. After that we 
have proposed two tracking algorithms both based on the 
discrete Kalman filtering to track the fading channel 
online. It was shown that the tracking algorithms have the 
capability to track a variety of fading channels once the 
symbol duration and the channel Doppler spread are 
known. The order of the model used in the tracking 
algorithms represents a fine control for the accuracy of 
the process, but at the cost an increase in computational 
complexity. 
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Figure 1: Channel tracking of ( ,0)h n  using algorithm-1, 0 03.df T =  and an AR model order of 50 
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Figure 2: Channel tracking of ( ,1)h n  using algorithm-1, 0 03.df T =  and an AR model order of 50 
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Figure 3: Channel tracking of ( ,1)h n  with order mismatch: channel generated using AR(100) and tracked using AR(50) 
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Figure 4: Channel tracking of ( ,2)h n  with order mismatch: channel generated using AR(100) and tracked using AR(50)
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Figure 5: Tracking ( ,2)h n  of a channel generated using Jakes model with M=200 using an AR(50) model 
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Figure 6: Tracking ( ,3)h n  of a channel generated using Jakes model with M=200 using an AR(50) model 
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