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Summary

A novel closed form expression for the moments of a 
filtered semiconductor laser phase noise random variable 
is derived. These moments are essential for statistical 
characterization of filtered phase noise in heterodyne op-
tical receivers, where some function of the phase noise 
process is usually integrated over a symbol interval. The 
derived expression enable s the computation of a given 
moment from the knowledge of the product of the laser 
linewidth and the symbol interval. The latter quantity 
will be referred to as the linewidth-duration product 
(LDP).

1 Introduction

Semiconductor laser phase noise plays a major role in 
degrading the performance of heterodyne optical com-
munication receivers [1–4]. Most existing heterodyne 
receivers are based on matched filter models (or equiva-
lently, integrate-and-dump filters) which are known 
to be optimal in the absence of laser phase noise [5]. 
Therefore, a substantial interest has grown over that past 
two decades or so in statistically characterizing filtered 
phase noise random variables [4], [6–14]. A brief review 
of these efforts is given in [15].

In a previous work [13] the author used simulated phase 
noise samples to obtain the log moment generating func-
tion (MGF) of a filtered phase noise random variable in 
the form of a finite-length power series of the frequency 
variable s. In a more recent work the author presented 
a much more accurate representation by expressing the 
power series in terms of |s|1/4. As a matter of fact, the 
accuracy of such procedures is governed by the size of 
populations used in calculating the MGF. The number 
of the series coefficients, the choice of the independent 
variable (s, |s|1/4, …, etc.) and the range over which this 
variable changes are also determining factors when judg-
ing the quality of the series representations.

This paper takes an analytical route to studying the sta-
tistics of filtered phase noise random variables. Several 
novel relations governing the random variables and their 
moments are derived. In particular, we derive a gener-
al formula for finding the nth order moment of a fil-
tered phase noise random variable in terms of the LDP. 

Moments can be quite useful in MGF, characteristic 
function (CF), and probability density function (PDF) 
studies of filtered phase noise.

The results of this research are believed to represent a 
significant step towards a full analytical statistical re-
presentation of filtered phase noise. It is also believed 
that the results obtained here will be very helpful in 
performance studies of heterodyne optical receivers. In 
additions, they have the advantage of not suffering the 
limitations of small-phase noise approximations usually 
used in the literature.

2 Phase Noise Differential Equations
Let’s define the linewidth duration factor (LDF) ρ of a 
phase noise process θρ(t) by

ρ π= βΤ  (1)

where T is an integration interval (in a communication 
system, this is usually the duration of a bit or a symbol) 
and β is the linewidth of the phase noise process. Consider 
the random variable

η ρ θρ( ) =
( )∫1

0
T

e dt
j t

T

 (2)

It was shown in [4, 13, 14, 15] that the statistics of fil-
tered phase noise random variables similar to the one in 
(2) are dependent on βT. Hence, such statistics must be 
also be dependent on ρ. The notation η(ρ) is being used 
to signify this dependence. Let’s consider the first de-
rivative of η(ρ) with respect to ρ, defined according to:

d

d

η ρ
ρ

η ρ ε η ρ
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 (3)
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Since η(ρ) is due to phase noise process θρ(t) which has 
a linewidth β, then η(ρ + ε) is due to a phase noise pro-
cess with a linewidth β + δ such that (refer to (1) for 
comparison) 

ρ ε π β δ+ = +( )T  (4)

Noting that θρ(t) is zero-mean gaussian with variance 
2πβt [4], it can be easily seen that the phase noise pro-
cess needed to generate η(ρ + ε) must be zero-mean 
gaussian with variance 2π(β + δ)t. In accordance with 
our terminology, the latter process can be denoted by 
θρ+ε(t). The process θρ(t) can be usually written in the 
form [4]

θ π ζ τ τρ ρt d
t

( ) = ( )∫2
0

 (5)

where ζρ(t) is a zero-mean white gaussian random process 
with double-sided power spectral density β/2π. Hence, 
the process θρ+ε(t) = θρ(t(β + δ)/β) (which is obviously 
zero-mean gaussian with variance 2π(β + δ)t can be 
shown to be the process needed to generate η(ρ + ε).

Therefore,

η ρ ε
θ β δ

βρ
+( ) =

+



∫1

0
T

e dt
j tT

 (6)

This can be manipulated to yield

η ρ ε ρ
ρ ε

η ρ θ

δ
β

ρ+( ) =
+

( ) +














+( )∫1

0
T

e dt
j t T

T


 (7)

Noting that the interval [0, T δ/β] is supposed to vanish 
as ε tends to zero, we can easily assume that the exponent 
in the integrand in (7) is equal to the time-independent 
quantity jθρ(T), which allows (7) to be approximated 
by:

η ρ ε ρ
ρ ε

η ρ ε
ρ ε

θρ+( ) ≈
+

( ) +
+

( )
e

j t  (8)

Applying the limit in (3) produces

d

d
e

j Tη ρ
ρ ρ

η ρθρ( ) = − ( )





( )1
 (9)

This novel result is expected to have very important roles 
in a wide range of statistical analysis of filtered phase 
noise. Solving the first order differential equation in (9) 
yields

η ρ
ρ

ξθ
ρ

ξ( ) =
( )∫1

0

e d
j T

 (10)

By a simple substitution of variables we can deduce (2) 
from (10), which verifies the derivation of (9). 
Furthermore,

d

d
n en n j t

ρ
η η ρ

ρ
η ρθρ( ) = ( ) − ( )





− ( )1 1  (11)

Let μn(ρ) denote the nth moment of η(ρ) given by

µ ρ η ρn
nE( ) ( )   (12)

Applying statistical expectation to both sides of (11) 
yields

′ ( ) + ( ) = ( )





− ( )
µ ρ

ρ
µ ρ

ρ
η ρ θρ

n n
n j Tn n

E e1  (13)

where the prime in the superscript denotes differentia-
tion with respect to ρ. The differential equation in (13) 
is particularly simple when n = 1 in which case we 
have 

ρµ ρ µ ρ ρ′ ( ) + ( ) = −
1 1 e  (14)

where we have used the fact that [4]

E e ej Trθ ρ( ) −[ ] =  (15)

Solving (14) results in

µ ρ
ρ

ρ
1

1
1( ) = −( )−e  (16)

This is identical to the result obtained in [13] by directly 
applying statistical expectation to both sides of (2). The 
solution is not as easy when n > 1, in which case ηn–1(ρ) 
and θρ(T) are not statistically independent. To perform 
the expectation on the right hand side of (13) we can first 
write

η ρ η ρθ
θ
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ρ

n j T j
T

n

n

j

e e
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e
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

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1

 (17)

where

Q t t
T

n
( ) = ( ) +

( )
−

θ
θ

ρ
ρ

1
 (18)

Returning to (13) and using (17) we can express the mo 
ment differential equation for n > 1 in the form

′ ( ) + ( ) = ( )−µ ρ
ρ

µ ρ
ρ

µ ρn n Q n
n n

, 1  (19)

where μQ,n–1(ρ) is the (n – 1)st moment of ηQ(t) given 
by:

ηQ
jQ t

T

t
T

e dt( ) = ( )∫1

0

 (20)

Now, (19) can be solved to yield
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µ ρ ρ ξ µ ξ ξ
ρ

ξ
n

n n
Q nn e d( ) = ( )− − −

−∫ 1

0

1,  (21)

Making use of (5) we can write (18) in the form

Q t
n

n d d
t T

( ) =
−

−( ) ( ) + ( )




 ∫ ∫1

1
2 1 2

0 0

π ζ τ τ π ζ τ τρ ρ







 (22)

Splitting the rightmost integral into two integrals over 
the intervals [0, t] and [t, T] we obtain

Q t
n

n t t( ) =
−

( ) + ( ) 
1

1
θ λρ  (23)

where

λ π ζ τ τρt d
t

T

( ) = ( )∫2  (24)

Note that λ(t) is a zero-mean gaussian random process 
which has a variance 2πβ(T – t) and which is statisti-
cally independent of θρ(t). Hence, Q(t) is zero-mean 
gaussian with variance

σ πβ πβ
Q

n t T

n
2

2

2

1 2 2

1
= −( ) +

−( )
 (25)

The same variance in (25) is possessed by the zero-mean 
gaussian process

R t t
T

n
( ) = ( ) +

( )
−

θ
ϕ

υ
ρ

1
 (26)

where

υ ρ= +
−

n

n

1

1
 (27)

and ϕρ(T) is a zero-mean gaussian random variable 
which has a variance 2πβT, and which is statistically 
independent of θυ(t) Therefore, the following random 
variable has the same statistics as ηQ 

η

η
ϕ

υ

ρ

R
jR t

T

j
T

n

T
e dt

e

=

=

( )

( )
−
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0
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where

ηυ
θυ= ( )∫1

0
T
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 (29)

As a result,
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Substituting this relation in (21) yields

µ ρ ρ ξ µ ξ
ρ
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 (31)

Successive substitutions of μn–1(ρ), μn–2(ρ), …,μ1(ρ) into 
(31) obviously produce a general expression for μn(ρ). 
However, this leads to lengthy results which cannot be 
easily simplified.

Alternatively, we choose to start by substituting (30) into 
(19) to obtain

′ ( ) + ( ) = ( )−
−µ ρ

ρ
µ ρ

ρ
µ ρρ

n n n n
n n

e a1  (32)

where we have defined

a
n

nn = +
−

1

1
 (33)

Multiplying both sides of (32) by ρn gives after some 
rearranging

d

d
g

n

a
e g an

n
n n nρ

ρ ρρ( ) = ( )−
−

−1 1  (34)

where

g x x xn
n

n( ) = ( )µ  (35)

Applying Laplace transform to (34) (by transforming ρ 
into s) yields

G s
n

a s
G

s

an
n
n n

n

( ) = +



−1

1
 (36)

where G1(s) is the Laplace transform of gl(ρ). Now, from 
(16) and (35) we get

G s
s sl ( ) =

+( )
1

1
 (37)

Using (36) to determine G2(s) from G1(s), then G3(s) 
from G2(s) and so on results in the following general 
expression for Gn(s)

G s
n

s A
n

n k
k

n
( ) =

+( )
=

∏
!

,
0

 (38)

where An,0 = 0 and An,1 = 1, while for k ≥ 2 we have

A A an k n k n
l

k
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=
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 (39)
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Since the elements of the set {An,k}, which are the nega-
tives of the poles of Gn(s) in (38) are all distinct, as can 
be seen from (39), partial fractions expansion can be 
used to find that gn(ρ) is equal to

g n B en n k
k

n
An kρ ρ( ) =

=

−∑! ,
,

0

 (40)

where

B

A A
n l

n k n l
k
k l

n,

, ,

=
−( )

=
≠

∏
1

0

 (41)

Therefore, using (35) and (40)

µ ρ ρ ρ
n

n
n k

k

n
An B e n k( ) = −

=

−∑! ,
,

0

 (42)

The following few moments were obtained by direct ap-
plication of (42) and also by successive substitutions in 
(31):

µ ρ
ρ

ρ ρ
2 2

41

6
3 4( ) = − +( )− −e e  (43)

µ ρ
ρ

ρ ρ ρ
3 3

3 91

72
16 27 12( ) = − + −( )− − −e e e  (44)

µ ρ

ρ ρ ρ ρ

4
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3
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− + − +− − − −e e e e 66ρ( )

 (45)

3 Results

The nth order mean of η(ρ) has been plotted in Fig. 1 
as function of n for several values of the LDP. A few 
observations can be made regarding this figure. First, 
since n is an integer, the curves should have been shown 
as sets of isolated points. However, we chose to connect 
the points to show the general trend in these curves as 
n is varied. The points themselves are indicated using 
markers. Second, the moments get smaller as the LDP 
gets larger. This observation is rather important; because 
it is well-known that η (or a related quantity) usually 
multiplies the signal term at the input of the symbol (or 
bit) decision circuitry in the receiver. Hence, a larger 
LDP results in smaller multipliers, leading to more fre-
quent errors in the decision process. Third, and because 
of the second observation, if the moments are to be used 
in calculating the MGF or the CF of η, then fewer mo-
ments are needed as the LDP gets larger. Fourth, all 
curves in Fig. 1 are very close to linear curves. Noting 
that the vertical axis is logarithmic leads to a general 
conclusion that the dependence of the moments on n has 
a decaying exponential nature. This suggests that (42) 
is easy to approximate by a single decaying exponential 
term (in n) when a more involved analysis of the statistics 
of η is needed.

In Fig. 2 we plot the nth order mean of η(ρ) as function 
of the LDP for several values of n. The second and third 
observations made about Fig. 1 can also be made about 
Fig. 2. However, it is obviously difficult to observe a pure 
decaying exponential dependence of the moments on the 
LDP. Therefore, even using an approximation, several 
exponential terms (rather than just one term) in (42) are 
necessary.

4 Conclusions

A novel filtered phase noise differential equation, with 
the LDF acting as an independent variable, has been 
derived. This equation can be very helpful in more 
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thorough statistical modeling of filtered phase noise. A 
novel closed form expression for the moments of a fil-
tered semiconductor laser phase noise random variable 
has also been derived. The dependence of the moments 
on both the moment order and the LDP has been il-
lustrated. Decaying exponential approximations of mo-
ments as functions of moment orders appear to be rea-
sonable. Such approximations can be extremely useful in 
MGF and CF (and consequently PDF) characterizations 
of filtered phase noise. This last reasoning in particular 
seems to need further investigation, though.
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