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Abstract 
 

In an earlier article [1] the author presented an 
accurate statistical characterization of filtered laser phase 
noise in heterodyne optical receivers. The author used 
simulated phase noise samples to obtain the natural 
logarithm (log) moment generating function (MGF) of 
filtered phase noise as a finite-length power series in the 
frequency variable s . Least squares curve fitting has 
been used to estimate the series coefficients. In this paper 
a much more accurate representation is obtained by 

expressing the power series in terms of  1 4s . 

 
The results of this  research are applicable to a host of 

problems in heterodyne optical receiver performance 
evaluation. They also have the advantage of being 
accurate in large- as well as small-phase noise situations. 
A wide range of phase noise levels  is studied through the 
variation of the linewidth-duration product (values 
between 0.001 and 10 are considered). Most current and 
previous literature on this issue assumes phase noise is 
small. A demonstration of the error in applying the small 
phase noise approximation to cases of large and medium 
phase noise were presented in [1]. 
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1. Introduction 
 

A major source of performance degradation in 
heterodyne optical receivers is semiconductor laser phase 
noise [2]-[5]. Most existing literature on system 
performance in the presence of phase noise assumes a 
matched-filter-based model for the demodulator, even 
though his model has not been proved to be optimal in 
terms of error probability. The lack of a phase-noise-
optimal heterodyne optical receiver is due to the fact that 
phase noise is very difficult to characterize statistically. 
No closed form expressions are available for its 
probability density functions (PDFs) or moment 
generating functions. 

 The need for a good statistical model of filtered phase 
noise is due to the dominance of matched-filter-based 
demodulators in heterodyne optical receivers. The 
literature on attempts to statistically model filtered phase 
noise is too huge to cite here. However, a significant deal 
of this literature is devoted to small phase noise 
assumptions. Examples include the work by Einarsson [5] 
and by Foschini and Vannucci [6]. The weakness of small 
phase noise approximations becomes significant when 
they are applied to situations where phase noise cannot be 
assumed small. Substantial performance evaluation errors 
are inevitable when such approximations are used in these 
cases. 
 
 The random variable representing laser phase noise at 
the output of a matched filter (or an equivalent correlator) 
is most often given by: 
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where T  is the integration interval (usually related to a 
symbol, bit or chip duration), and ( )tθ  is a Wiener-Levy 
laser phase noise random process with linewidth β . A 

common mathematical representation of ( )tθ  is  
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where (.)ϕ  is a wide sense stationary gaussian random 
process having a zero mean and a flat power spectral 
density equal to 2β π  [5]. 
 
 Equation (1) shows that η  is a complex quantity 

with a real part 
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and an imaginary part 
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Hence, in complex notation 
 
 c sjη = η + η  (5) 
 
The magnitude squared of η  is given by: 
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 The random variables in (1), (3), (4), (5) and (6), in 
addition to η  are usually encountered in error 

probability analysis of heterodyne optical receivers that 
are based on matched filters or correlators . The most 
followed procedure in such analysis is to condition the 
error probability on the phase noise random variable, then 
to perform averaging using simulation. The author has 
presented an alternative to this process [1] by providing a 
semi-closed form expression for the MGF of U  (a similar 
approach can be applied to the MGF or PDF of any of the 
other above-mentioned random variables). The random 
variable U  in particular usually appears in conditional 
error probability expressions of FSK and DPSK receivers. 
 
 The objective of the present paper is to use the 
accurate phase noise simulation procedure outlined and 
used in [1] to generate phase noise samples. The paper 
then extends the work in [1] by representing the log MGF 

of U  as a power series in 1 4s  rather than s . The 

motivation for using this new variable is two fold: first, 
the power series representation in [1] is  not very accurate 
for large values of s , second, the new variable appeared 
in a very good analytical work on a small phase noise 
approximation given by Einarsson in [5]. A wide range of 
phase noise levels is studied through the variation of the 
linewidth-duration product Tβ  (values between 0.001 

and 10 are considered). 
 
2. Mathematical Modeling of the MGF 
 
 The moment generating function of the random 
variable U  is computed using direct numerical evaluation 
of the equation 
 

 ( ) E sU
U s e Ψ =    (7) 

 
where the statistical average involved is commonly 
replaced by a population average. Throughout the results 
given in this paper, populations of 500,000 samples are 

used in every averaging operation. Because of the 
exponential dependence of ( )U sΨ  on s , most of our 
work will be in terms of the log MGF, defined as 
 
 ( ) ln ( )U Us sϒ = Ψ  (8) 
 
 It is well-known that the MGF of U  can be written 
as an infinite power series in s , where the series 
coefficients are the moments of U . This representation 
has the form 
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 This representation has a great mathematical value, 
however, making use of it in numerical procedures 
usually requires an unnecessarily large number of 
moments to be pre-computed. Therefore, it has a limited 
value in situations where numerical procedures are 
necessary. 
 
 To get around the difficulty in using an MGF 
expression like the one in (9), an alternative 
representation is needed. This is done by obtaining a 
power series representation of ( )U sϒ  which involves a 
small number of coefficients. 
 
 Note that the proposed modeling of the phase noise 
MGF below is  valid only for real values of the complex 
frequency variable s . This does not involve any loss of 
generality as far as the computation of error probabilities 
of many types of heterodyne optical receivers is  
concerned. The procedure can be easily generalized to 
take care of cases where s  must remain complex. 
 
 We will assume that the log MGF can be written in 
the form 
 

 
1

( )
N

n
U n

n

s a z
=

ϒ = ∑  (10) 

 
where 
 

 1 4sgn( )z s s=  (11) 

 
Note that the sign function had to be used in (11) because 

( )sΨ  and ( )U sϒ  are not even functions of s , as will be 

demonstrated by plots of ( )U sϒ . 
 
 As will be seen from the results, (10) produces a 
sufficiently accurate representation of ( )U sϒ  and 

( )U sΨ  for values of N  that are usually less than 20. 
Note that the sum in (10) does not include an 0n =  term 



to comply with the fact that (0) 1Ψ = . The emphasis on 
the MGF of U  rather than its PDF is due to the direct use 
of the MGF in expressions of the error probability of 
optical heterodyne receivers utilizing noncoherent 
demodulators. 
 
3. Results 
 
 As mentioned earlier, the results below are based on 
an accurate simulation of the magnitude squared filtered 
phase noise random variable. The simulation procedure 
was outlined in [1]. Each result is based on a population 
of 500,000 samples of U . 
 
 Figure 1 shows the estimated PDF of U  when the 
linewidth duration product varies from 0.1 to 10. Smaller 
values of Tβ  are indicative of small phase noise, while 

larger values are indicative of severe phase noise. Note 
that, for example, a value of 5Tβ =  means that the laser 
linewidth is five times the bit rate. Curves in Figure 1 
demonstrate that small linewidth products result in values 
of U  that are very close to unity. On the other hand, large 
linewidth duration products result in values of U  that are 
very close to zero. These trends agree with the fact that 
filtered phase noise is a multiplicative type of noise, 
keeping in mind that the ideal phase noise case is 
equivalent to a phase noise with a zero linewidth duration 
product. 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Magnitude Squared Filtered Phase Noise Random Variable U

E
st

im
at

ed
 P

D
F

 U
si

ng
 5

00
,0

00
 S

am
pl

es

BT=0.1

0.5

1

5

10

 
Figure 1: Estimated PDF of the magnitude-squared filtered phase noise 
random variable U  for Tβ = 0.1,0.5,1,5,10 

 
 Figure 2 and Figure 3 show the estimated log MGF 
of U  when Tβ  varies from 0.001 to 10. Note that for 
very small phase noise the log MGF tends to approximate 
a linear function of s . With little mathematical 
manipulation this leads to a PDF that approximates a delta 
function at 1u = . Obviously, as Tβ  gets smaller and 
smaller, the delta function approximation of the PDF 
becomes a better one with its center getting nearer and 
nearer to 1u = , ultimately coinciding with the no phase 
case of 1u = . 
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Figure 2: Estimated log MGF of the magnitude-squared filtered phase 
noise random variable U  for Tβ = 0.001,0.01,0.1 
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Figure 3: Estimated log MGF of the magnitude-squared filtered phase 
noise random variable U  for Tβ = 0.1,0.5,1,5,10 

 
 Figure 4 shows the squared error in fitting ( )sϒ  by 
the polynomial in (10), plotted versus s . This error can 
be easily seen to be small enough to make the fitting 
process a suitable one. 
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Figure 4: Least squares curve fitting error in the power series expansion 
of the log MGF of the magnitude-squared filtered phase noise random 
variable U  for Tβ = 0.001,0.1,10 



Finally, Table 1 gives all coefficient values in (10) for 
20N = , and a wide range of the linewidth duration 

product. It should be emphasized that these values are the 
outcome of curve fitting based on MGF values computed 

by simulation. Therefore, should the simulation and curve 
fitting be repeated, or a different number of samples be 
used, the coefficients may vary. However, the variation 
should naturally be within a small range. 

 
 

 0.001Tβ =  0.01 0.1 0.2 0.5 1 2 5 10 

1a  -9.003E-2 1.397E-1 -1.268E+0 1.516E+0 3.208E-1 1.200E-5 -2.455E-1 -5.769E-1 2.056E+0 

2a  -3.336E-4 -8.202E-2 -7.960E-1 -9.439E-1 1.191E-1 1.788E-1 1.190E-2 -6.415E-1 1.627E+0 

3a  6.108E-1 6.153E-3 4.291E+0 -3.231E+0 -7.277E-1 1.240E-1 7.558E-1 1.226E+0 -4.673E+0 

4a  7.092E-4 2.071E-1 1.254E+0 2.295E+0 -9.730E-2 -3.319E-1 6.554E-2 1.401E+0 -3.696E+0 

5a  5.536E-1 1.168E+0 -3.975E+0 3.734E+0 1.587E+0 4.382E-1 -4.512E-1 -7.554E-1 4.129E+0 

6a  -5.968E-4 -2.082E-1 -5.194E-1 -2.125E+0 -1.119E-1 1.844E-1 -1.648E-1 -1.163E+0 3.266E+0 

7a  -8.928E-2 -4.257E-1 2.584E+0 -1.481E+0 -7.153E-1 -1.565E-1 2.685E-1 2.392E-1 -1.795E+0 

8a  2.674E-4 1.111E-1 -5.723E-2 9.920E-1 1.736E-1 1.426E-2 1.491E-1 4.919E-1 -1.491E+0 

9a  1.544E-2 1.233E-1 -8.603E-1 3.414E-1 1.913E-1 4.221E-2 -6.984E-2 -2.620E-2 4.352E-1 

10a  -7.109E-5 -3.505E-2 9.509E-2 -2.530E-1 -6.093E-2 -1.569E-2 -4.621E-2 -1.148E-1 3.930E-1 

11a  -1.985E-3 -2.330E-2 1.643E-1 -4.869E-2 -3.126E-2 -7.037E-3 1.105E-2 -7.534E-4 -6.089E-2 

12a  1.184E-5 6.858E-3 -2.679E-2 3.929E-2 1.122E-2 3.587E-3 7.966E-3 1.656E-2 -6.267E-2 

13a  1.750E-4 2.793E-3 -1.884E-2 4.394E-3 3.197E-3 7.315E-4 -1.102E-3 5.176E-4 4.987E-3 

14a  -1.246E-6 -8.379E-4 3.697E-3 -3.828E-3 -1.224E-3 -4.291E-4 -8.335E-4 -1.511E-3 6.168E-3 

15a  -9.928E-6 -2.040E-4 1.284E-3 -2.448E-4 -2.002E-4 -4.636E-5 6.766E-5 -5.738E-5 -2.291E-4 

16a  8.049E-8 6.199E-5 -2.808E-4 2.292E-4 7.963E-5 2.939E-5 5.270E-5 8.493E-5 -3.675E-4 

17a  3.254E-7 8.241E-6 -4.812E-5 7.698E-6 7.030E-6 1.642E-6 -2.338E-6 2.833E-6 5.108E-6 

18a  -2.913E-9 -2.529E-6 1.128E-5 -7.725E-6 -2.865E-6 -1.092E-6 -1.856E-6 -2.681E-6 1.218E-5 

19a  -4.672E-9 -1.407E-7 7.642E-7 -1.046E-7 -1.061E-7 -2.495E-8 3.479E-8 -5.441E-8 -3.410E-8 

20a  4.522E-11 4.356E-8 -1.878E-7 1.123E-7 4.393E-8 1.712E-8 2.798E-8 3.635E-8 -1.725E-7 

 
Table 1: Coefficients of polynomial curve fitting of ( )sϒ  

 
 
4. Conclusion 
 
 We have demonstrated a new method of statistically 
characterizing filtered phase noise in optical heterodyne 
receivers that use matched filter demodulators. The 
method is based on least squares fitting of the log MGF of 
the filtered phase noise random variable using a power 
series. The accuracy of the new method has been verified 
through plots of the fitting error which was clearly shown 
to be negligibly small. 
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