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ABSTRACT- The power spectral density of optical hy-
brid M-FSK/N-ASK (HFAM) signals is analytically evalu-
ated in two cases. In the first case, HFAM signal is assumed
to be phase noise free. In the other case, the HFAM signal
is assumed to be corrupted by phase noise. The expressions
obtained for the power spectrum are implemented and plot-
ted versus the normalized frequency fT;, where T}, is the bit
duration. This is done for a group of combinations of M and
N, where M = 2,4,8,16 is the number of FSK levels and
N = 2,4 is the number of ASK levels. The fractional out-of-
band power containment bandwidths are obtained numer-
ically using Matlab, and plotted against fT; for the same
combinations of M and N mentioned above.

1 Introduction

In this paper we study the spectral characteristics of a cel-
lular mobile communication system employing optical feeder
[1]. The transmitted signals are modulated using a hybrid
frequency amplitude (HFAM) modulation technique. This
proposed hybrid ASK/FSK modulation technique is antic-
ipated to be both power- and bandwidth-efficient. This is
due to that ASK is a bandwidth-efficient technique (2], while
FSK is a power-efficient technique [3].

In HFAM, every k,-bits of the source stream is devided
into two streams. The first stream of length ks data bits is
used to set the carrier frequency to one of M = 2*s values.
At the same time, the other stream of data bits of length k4
is used to set the ASK level to one of N = 2¥4 values. From
a signal constellation point of view, the signal space can be
seen into M sets each consisting of N signals. The signals in
different sets are uncorrelated and orthogonal. The M x N
signals have equal time durations and different energy levels
depending on the generated ASK level. The source emits a
random symbol from a set of L symbols every T, seconds,
where L = 2FA+kEs. The expected theoretical bandwidth
for such a modulation scheme is approximately W = MAf
[5], where Af is the frequency separation between two adja-
cent tones. In each symbol interval, k; bits are transmitted.
Hence, the data rate is equal to Ry = k; /T, where T} is the
symbol interval.

This paper is organized as follows: section 2 introduces
the transmitted signal model of HFAM signals. Section 3
presents an evaluation of the correlation coefficient of HFAM
signals. In section 4 the power spectral density of HFAM sig-
nals is evaluated. Section 5 outlines the bandwidth efficiency
achieved by the HFAM technique. Results and comparisons
are presented in section 6. Finally, conclusions are summer-
ized in section 7.

2 Transmitted signal model

A block diagram of an HFAM modulator is shown in Fig. 1.
A PAM modulator generates rectangular pulses of duration
T, and amplitudes a,, according to the k4 data bits. The M-
ary FSK modulator generates FSK signals with frequencies
fm, where f,, depends on the ks data bits. The output
of PAM modulator is impressed upon the output of the M-
ary FSK modulator to produce the HFAM electrical signal
which finally externaly modulates the laser optical source to
produce the optical HFAM signals.

The frequency-amplitude modulated signal corresponding
to the output of the HFAM modulator can be represented as

snn{(t) = R{a,,e”",""g(t)ejz"!"} 0<t<T,,
n =12,.,N and m=1,2,..,.M (1)

where R{ } denotes the real part of the complex quantity in

the brackets. In (1) an = \/2E,,/T;, where E, is the energy
of the generated nth ASK level. f, is the center frequency
of the optical laser source, and g(t) is a rectangular pulse
of unity amplitude and duration T,. The equivalent low-
pass waveform of the generated optical HFAM signals can
be written as

Unm(t) = e mig(t), 0<t<T, ()

3 Correlation coefficient of HFAM

The complex-valued correlation coefficient of HFAM signals
can be defined as

1 e .
r= T\/ﬁ /0 unm(t)ulk (t)dt : (3)
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Where the asterisk denotes the comlex conjugate. The
HFAM signals satisfy the orthogonality condition if the real
part of the correlation coefficient r is zero, i.e,

sin(rAfT,)

Rirk= A fT,

Where Af = fp, — fi is the separation between two adjacent
frequency tones and 6 is the phase difference between two
consecutive symbols. It can be shown that the orthogonality
condition is met when the frequency separation is Af =
k/T, for any integer k. The minimum frequency separation
between two adjacent tones in HFAM is 1/T.

cos(rAfT, + 6a) (4)

4 Power spectral density

In this section the spectral density of HFAM signals is an-
alyzed in two cases; in the first case, the HFAM signal is
assumed to be with zero linewidth laser. In the other case,
the HFAM signal is assumed to be with laser linewidth not
equal to zero.

4.1 Spectral density with zero linewidth
laser

The HFAM transmitted signals with zero linewidth laser can
be represented as

s(t):R{Z}, p(t —ITy) er;(ij £ Tug(t—kT, }xp (jor f,t)} (5)

where f; is the carrier frequency, and

I, =%1,43,..,£M -1, (6)
1 T <t<(+ )T,
p(t-IT) = { 0 elsewhere
and
0 t <kT,
gt —kT,) = t—kT, kT, <t<(k+1)T, (7
T, t2(k+1)T,

The equivalent low-pass form of s(t) can be written as

(ijf Y Ika(t— kT,)) . (8)
k

The power spectral density of s(t), ¢s(f), is related to the
power spectral density of its equivalent low-pass form, ¢u(f),
by

u(t) = i a;p(t —1T;) exp

l=—00

b =31+ a+1) O
The autocorrelation function of u(t) is defined as
ou(t +7,t) = E{u(t+ 7)u’(t)} (10)

where E { } denotes to ensemble averaging of the argument.
From the statistical independence of {a,} and{I};} sequences,

200 JIEEEC’98 Amman-Jordan

and after a number of mathematical steps, equation (10) can
be written in the following form

M-1
dulr) = MIT Y cos(1Af17) Y bua(r) Ryp(r — 7T.)
% n= ,od r
1,0dd (1)
where "
a + pg m=
¢aa(m) { /"'a ﬂ m#o ,
N2 —1)A?
N2AZ
#3 = _411 (13)

and A, is the separation between two adjacent ASK levels.
Also,

Ro(r) = [ ple 4 ript0)e
(19

is the time average autocorrelation function. Performing the
Foureir transform of the autocorrelation function in (11) to
obtain the power spectral density of u(t), ¢.(f).

sin(r(f - "20)T,)\?
du(f) = 2MT { Z UZT.Q ((‘WT.—)

n=1,od

(sin(7r(f s %L)T.))2
7r(f + E‘L)Ta
+ 2, (o0 - 220y o+ 220))) (15)

Equation (15) denotes the exact expression for spectral den-
sity of the HFAM signals with free phase noise.

4.2 Spectral density with laser linewidth
not equal to zero

The HFAM transmitted signal with laser linewidth not equal
to zero s,(t) is expressed as

©co

s(t=R { E aip(t — IT,) exp

l=—o00

(j7rAf i qu(t-kT.)J'ﬁ(t)) exp (j27rf:t)}(16)

k=—co

where 6(t) is the laser phase noise which denotes a Wiener
process with variance equal to 2wt where B is laser
linewidth. The equivalent low-pass signal of s,(t) is given
by

(o<}

v(t) = E a;p(t—IT,) exp

l=-00

(j1rA fz Iiq(t — kT,) + jo(t))_ )
‘ (17)



The autocorrelation function of v(t) is defined as
$o(t +7,t) = E{v(t+ 7)o’ (1)} (18)

From the independence of {a;}, {Ii}, and 6(t) equation (18),
after a number pf mathematical steps, becomes

Gu(t+T,1) %E, {e?2-°) E, {Zza,a;np(t +7-1T,)
I m

p* (t—mT,)}

Er {exp(ﬁrAf [E Iq(t + 7 — kT,)
’ k

! "

Where A,0 is phase fluctuations and has a Gi}ussian Z€ero-
mean distribution function. Evaluation of E {e’A'o} is done
in [6] and it is given by

X

z Ing(t — nTy)

(e} = e (-GRO+A)  (0)

4P

Where R,y is the rate at which spontaneously emitted pho-
tons are added to the interacavity photon population, 8, is
the linewidth enhancement factor, and P is the laser power
emitted at static case. By observing (20), it can be seen that
it is time independent. Then spectral density of the HFAM
signal with finite laser linewidth ¢, (f) is equal to the spectral
density of the HFAM signal with zero linewidth ¢, (f) con-
volved with the fourier transform of (20). In mathematical
expressions

1
$u(f) = (1:_,’;(1 + B2) + jor f

) * ¢u(f) (21)

with some mathematical manibulations (21) becomes

P 2
() = 51 {(oZT, (-s—‘;‘r-}’Tﬂ) +#36(f))

M-1
2G + j4=f
' nﬂz;dd(cz — 4r3(f2 — (29L)2) +j41rGf) } e
where
G= h(l +ﬁ2) (23)
4P ¢

5 Bandwidth efficiency (BE)

In this section, the bandwidth efficiency is evaluated in the
light of two measures; the first is based on minimum fre-
quency separation, the other is based on fractional power
containment bandwidth.

5.1 BE based oh minimum frequency sepa-
ration

In section 3 it was found that for orthogonality of HFAM
waveforms, the minimum separation between two adjacent
tones is 1/T,. Consequently, the required channel bandwidth
for transmission can be approximated by

W =MAf (24)
However, the bit rate is given by
_loggL  ka+k
Ry = T, =TT (25)

Hence, for heterodyne coherent envelope detection of HFAM
signals, the bandwidth efficiency is given by

Ry _ (logy M +log, N)
W M

One can see that the expression in (26) shows that as the
number of orthogonal sets M increases, the bandwidth re-
quired for transmission also increases and the bandwidth ef-
ficiency decreases. If the number of keying amplitudes N
increases, the bandwidth efficiency increases.

(26)

5.2 BE based on fractional power contain-
ment bandwidth

The fractional out-of-band power containment is defined as

4] o
pg= 1= / o(f)df (27)
-B/2

Where ¢(f) is the power spectral density of HFAM signal
either with or without phase noise. If the fractional out-of-
band power containment defined in (27) is plotted against the
bandwidth normalized by the bit rate (BT}), bandwidth ef-
ficiency can be obtained directly for a given fractional power
bandwidth.

6 Results and comparisons

The power spectral density of HFAM signals without phase
noise given in (15) are plotted against the normalized fre-
quency (fTb) in Figs. 2 and 3. This is done for the HFAM
combinations MF/2A and MF/4A, where M = 2,4. Also,
the power spectral density of HFAM signals with phase noise
given in (22) are plotted in Figs.4 and 5 for the same HFAM
combinations mentioned above. From these figures, one can
see that HFAM technique needs less bandwidth than FSK
for the same bit rate. For example, let us take HFAM com-
bination 2F/2A and 4F, the width of the main lope of the
spectral density of 2F/2A and 4F (without phase noise), ap-
proximately, is 0.75/T} and 1.2/T}, respectivelly.

The fractional out-of-band power containments of HFAM
modulated signals obtained by substituting (15) into (27)
and plotted versus normalized bandwidth BT}, in Figs. 6 and
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7 for the HFAM combinations MF/2A and MF/4A where
M = 2,4,8,16, respectively. From these plots, it can be
concluded that, for any fixed M and as the number of am-
plitude levels NV increases, the bandwidth efficiency of HFAM
is increased and the out-of-band spectral tails are reduced.

7 Conclusions

In this paper, a mathematical model of HFAM signals was
presented. These signals are characterized by relative sim-
plicity and the ability to increase the volume of a signal sys-
tem. We restrict our attention to the orthogonal HFAM
signal model. In this signal model, the minimum frequency
separation between adjacent tones of HFAM signals required
to satisfy the orthogonality condition is reduced compared
to FSK signals that use the same number of tones; which
denotes less bandwidth is needed for the same bit rate.
This model consists of M subsets of multilevel ASK signals;
the signals in each subset are orthogonal to signals in all
other subsets, thereby allowing individual detection of each
signal set without cross interference. This paper showed
that HFAM is more bandwidth-efficient modulation tech-
nique than the conventional CPFSK. Also, it showed that for
large power containment the bandwidth efficiency of HFAM
is comparable to that of the conventional L-ASK.

)
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Figure 1: HFAM modulator
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Figure 2: Normalized spectral density of the phase
noise free HFAM signal and M-FSK versus the nor-
malized frequency fT; for MF/2A, M=2,4.
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Figure 3: Normalized spectral density of the phase
noise free HFAM signal and M-FSK versus the nor-
malized frequency fT}, for MF/4A, M=2.4.
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Figure 4: Normalized spectral density of the phase
noise corrupted signal versus the normalized fre-
quency fT, for MF/2A and M-FSK, M=2,4.
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Figure 5: Normalized spectral density of the phase
noise corrupted signal versus the normalized fre-
quency fT, for MF/4A and M-FSK, M=2,4.
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Figure 6: Fractional out-of-band power versus normal-
ized bandwidth BT, for MF/2A, M=2,4,8,16 (with-
out phase noise).
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