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SYLLABUS 

Course Catalog 

3 Credit hours (3 h lectures). DSP fundamentals, such as the z-transform, DFT, FFT, IIR, and FIR 
filters, and so on. Optimum filtering. Various physical layer issues in communications are 
addressed, including channel estimation and adaptive equalization. 

Textbook 

Several books and journal articles. 

References 

BOOKS 

1. Alan V. Oppenheim, Ronald W. Schafer and John R. Buck, Discrete-Time Signal 
Processing, Prentice-Hall, 1999 

2. Giorgio M. Vitetta, Desmond P. Taylor, Giulio Colavolpe, Fabrizio Pancaldi and Philippa 
A. Martin, Wireless Communications Algorithmic Techniques, Wiley, 2013 

3. Frank A. Dietrich, Robust Signal Processing for Wireless Communications, Springer, 2008 

Instructor 

Instructor:  Dr. Mohammad M. Banat 

Email Address:  banat@just.edu.jo  

Prerequisites 

Background in linear algebra, signal analysis, random processes, communication systems and digital signal 
processing. 

Topics Covered 

Week Topics 
1-6 DSP Background 
7-9 Optimum Filtering 

10-12 Channel Estimation 

13-16 Channel Equalization 

Evaluation 

Assessment Tool Expected Due Date Weight 

Computer Assignments  10% 

Mid-Term Exam  20% 

Term Project Report  10% 

Presentations  10% 

Final Exam According to the university final examination schedule 50% 
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I. DSP BACKGROUND 

I.1. What Is Digital Signal Processing? 

A signal is a formal description of a phenomenon evolving over time or space. Signal processing 
means any operation which modifies, analyzes or otherwise manipulates the information contained 
in a signal. Digital signal processing is a flavor of signal processing in which everything including 
time is described in terms of integer numbers. 

I.2. Discrete-Time Signals (Sequences) 

Discrete-time signals are represented mathematically as sequences of numbers. A discrete-time 
signal is denoted as [ ]x n , where the variable n  denotes discrete time. In a practical setting, such 

sequences can arise from periodic sampling of an analog signal ( )ax t . In this case, 

 [ ] ( )ax n x nT   (I.1) 

The quantity T  is called the sampling period, and its reciprocal 1sf T  is the called sampling 

frequency. According to the sampling theorem, the original analog signal can be reconstructed as 
accurately as desired from a corresponding sequence of samples if the samples are taken frequently 
enough. Sampling rate should be equal to or higher than the Nyquist rate. For baseband signals, 
the Nyquist rate is equal to twice the highest frequency component of the signal. 

Although sequences do not always arise from sampling analog waveforms, it is convenient to refer 
to [ ]x n  as the thn  sample of the sequence. Discrete-time signals (i.e., sequences) are often depicted 
graphically as in Figure I.1 below. Although the abscissa is drawn as a continuous line, it is 
important to recognize that [ ]x n  is defined only for integer values of n . It is not correct to think 
of [ ]x n  as being zero when n  is not an integer; [ ]x n  is simply undefined for non-integer values 
of n . 

n

[ ]x n

0

3
3 54

76
8

21
2 1

 
Figure I.1: Discrete-Time Signal 

I.3. Basic Sequences and Sequence Operations 

In the analysis of discrete-time signal-processing systems, sequences are manipulated in several 
basic ways. The product and sum of two sequences are defined as the sample-by-sample product 
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and sum, respectively. Multiplication of a sequence by a number a  is defined as multiplication of 
the value of each sample by a . A sequence [ ]y n  is said to be a delayed or shifted version of a 
sequence [ ]x n  if 

 [ ] [ ]y n x n k    (I.2) 

where k  is an integer. 

The unit sample sequence is defined as the sequence 

 
1, 0

[ ]
0, otherwise

n
n


 


  (I.3) 

For convenience, the unit sample sequence is often referred to as a discrete-time impulse or simply 
as an impulse. It is important to note that a discrete-time impulse does not suffer from the 
mathematical complications of the continuous-time impulse; its definition is simple and precise. 
Compare (I.3) to following definition of ( )t  

 
undefined, 0

( )
0, otherwise

t
t


 


  (I.4) 

An arbitrary sequence can be represented as a sum of scaled, delayed impulses. For example, the 
signal in Figure I.2 can be expressed as follows: 

 3 1 2 7[ ] [ 3] [ 1] [ 2] [ 7]x n a n a n a n a n             (I.5) 

n

[ ]x n

0

3
72

1

3a
1a

2a
7a

 
Figure I.2: Discrete-Time Signal 

Any sequence can be expressed as 

 [ ] [ ] [ ]
k

x n x k n k



    (I.6) 

The unit step sequence is given by 
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1, 0

[ ]
0, 0

n
u n

n


  

  (I.7) 

The unit step is related to the unit impulse by 

 
0

[ ] [ ]

[ ]

k

n

k

u n n k

k











 






  (I.8) 

Conversely, the unit impulse sequence can be expressed as the first backward difference of the 
unit step sequence, i.e., 

 [ ] [ ] [ 1]n u n u n      (I.9) 

The general form of an exponential sequence is 

 [ ] nx n A   (I.10) 

where A  and   are constants that are generally complex. If A  and   are real numbers, then the 
sequence is real-valued. 

A sinusoidal sequence has the general form 

 0[ ] cos( )x n A n     (I.11) 

where A  ( amplitudeA  ), 0  (radian frequency), and   (phase) are all real. 

A complex exponential sequence has the form 

 [ ] nx n A   (I.12) 

where A  and   are generally complex. Let 

 
0

j

j

A A e

e



 




  (I.13) 

Then, 

 
 

0( )

0 0

[ ]

cos( ) sin( )

n j n

n

x n A e

A n j n

 

    



   
  (I.14) 

The fact that n  is always an integer leads to some important differences between the properties of 
discrete-time and continuous-time complex exponential sequences and sinusoidal sequences. A 
major difference between continuous-time and discrete-time complex sinusoids is seen when we 
consider a frequency 0 2 r  . Let r be an integer, and consider the sequence  
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0

0

( 2 )[ ] j r n

j n

x n Ae

Ae

 






  (I.15) 

This shows that complex exponential sequences with frequencies 0 2 r   are indistinguishable 

from one another. An identical statement holds for sinusoidal sequences. We conclude that, when 
discussing complex exponential signals or real sinusoidal signals, we need only consider 
frequencies in an interval of length 2 , such as 0      or 00 2   . 

Another important difference between continuous-time and discrete-time complex exponentials 
and sinusoids concerns their periodicity. In the continuous-time case, a sinusoidal signal and a 
complex exponential signal are both periodic, with the period equal to 2  divided by the (angular) 
frequency. In the discrete-time case, a periodic sequence is a sequence for which 

 [ ] [ ]x n N x n    (I.16) 

where the period is N , which is necessarily an integer. If this condition for periodicity is tested for 
the discrete-time sinusoid, then 

    0 0 0cos cosA n N A n          (I.17) 

which requires that 

 0 2N k    (I.18) 

where k  is an integer. Consequently, complex exponential and sinusoidal sequences are not 
necessarily periodic in n  with period 02   and, depending on the value of 0 , may not be 

periodic at all. 

Actually, if the sequence is periodic, then the period is given by the following expression, where 
k  is the smallest integer that makes the calculated value of N  an integer: 

 
0

2
N k




   (I.19) 

Example I-1 

Consider the sequence 1[ ] cos( 4)x n n . This sequence has a period 8N  . To show this, note 

that 1 1[ 8] cos( ( 8) 4) cos( 4 2 ) cos( 4) [ ]x n n n n x n          . Satisfying the definition of 

a discrete-time periodic sequence. Contrary to our intuition from continuous-time sinusoids, 
increasing the frequency of a discrete-time sinusoid does not necessarily decrease the period of the 
sequence. Consider the discrete-time sinusoid 2[ ] cos(3 8)x n n , which has a higher frequency 

than the sequence 1[ ]x n . However, 2[ ]x n  is not periodic with period 8, since 2 2[ 8] [8]x n x  . 

Using an argument analogous to the one for 1[ ]x n , we can show that 2[ ]x n  has a period 16N  . 

Thus, increasing the frequency from 0 2 8   to 0 3 8   also increases the period of the 

sequence. This occurs because discrete-time sequence are defined only for integer indices n . 
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The integer restriction on n  may cause some sinusoidal sequence not to be periodic at all. For 
example, there is no integer N  such that the sequence 3[ ] cos( )x n n  satisfies the condition 

3 3[ ] [ ]x n N x n   for all n . 

These and other properties of discrete-time sinusoids that run differently to their continuous-time 
counterparts are caused by the limitation of the time index n  to integers for discrete-time signals 
and systems. 

When we combine the condition of (I.18) with our previous observation that 0  and 0 2 r   

are indistinguishable frequencies, it becomes clear that there are N  distinguishable frequencies for 
which the corresponding sequences are periodic with period N . To see this, let’s choose 1r   and 

check the periodicity of sequences with angular frequencies 0
2

l
N

  , for 0, , 1l N  . Note 

that the number of choices for the angular frequency is N . According to (I.18), the period will be 
equal to N  if 

 

0

0

0

2
2

2 2

2 ( )

l N k
N

N l k

N k l

 

  
 

    
 

  

 
  (I.20) 

Since k l  is an integer, then all sequences with angular frequencies 0
2

l
N

   are periodic with 

period N . 

Example I-2 

Let 

3
[ ] cos

5
x n n

   
 

 

Obviously, 

0
3

5

   

To satisfy (I.19) for the smallest integer k , we should have 

2

3 5

10

3

N k

k








 

Note that the smallest possible integer k  is 3. Therefore, 

1 0N   
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Sequences with any of the following 10 frequencies have the same period 1 0N  : 

0

1

9

3

5
3 2

5 10

3 2
9

5 10



 

 



 

  


 

Exercise I-1 

Show that the period in Example I-2 is equal to 10. 

Show that the 10 sequences in Example I-2 have frequencies 0,0.2 , ,1.8   and that they all have 
the same period 1 0N  . 

Generally, the set of signals with frequencies 2 , 0,1, , 1k k N k N     all have the same 

period N . These properties of complex exponential and sinusoidal sequences are basic to both the 
theory and the design of computational algorithms for discrete-time Fourier analysis. 

The interpretation of high and low frequencies is somewhat different for continuous-time and 
discrete-time sinusoidal and complex exponential signals. For a continuous-time sinusoidal signal 

 0( ) cosx t A t    , as 0  increases, ( )x t  oscillates more and more rapidly. For the discrete-

time sinusoidal signal  0[ ] cosx n A n   , as 0  increases from 0 0   toward 0  , [ ]x n  

oscillates more and more rapidly. However, as 0  increases from 0   to 0 2  , the 

oscillations become slower. Values of 0  in the vicinity of 0 2 k   for any integer value of k  

are typically referred to as low frequencies (relatively slow oscillations), while values of 0  in the 

vicinity of 0 2 k     for any integer value of k  are typically referred to as high frequencies 

(relatively rapid oscillations). 

I.4. Discrete-Time Systems 

A discrete-time system is a transformation or an operator that maps an input sequence [ ]x n  into 
an output sequence [ ]y n , i.e., 

  [ ] [ ]y n T x n   (I.21) 
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Example I-3 

 

2

11 2

1 1 2
1 2

1
[ ] [ ]

1

1
[ ] [ 1] [ ] [ 1] [ ]

1

k M

k M

y n x n k
M M

x n M x n M x n x n x n M
M M




 

 

          
 



 
  

I.4.A. MEMORYLESS SYSTEMS 

A system is referred to as memoryless if the output [ ]y n  at every value of n  depends only on the 
input [ ]x n  at the same value of n . 

I.4.B. LINEAR SYSTEMS 

The class of linear systems is defined by the principle of superposition. If 1[ ]y n  and 2[ ]y n  are 

the responses of a system when 1[ ]x n  and 2[ ]x n  are the respective inputs, then the system is linear 

if and only if 

 
     1 2 1 2

1 2

[ ] [ ] [ ] [ ]

[ ] [ ]

T x n x n T x n T x n

y n y n

  

 
  (I.22) 

and 

 
   [ ] [ ]

[ ]

T ax n aT x n

ay n




  (I.23) 

where a  is an arbitrary constant. The first property is called the additivity property, and the second 
is called the homogeneity or scaling property. These two properties can be combined into the 
principle of superposition, stated as 

      1 1 2 2 1 1 2 2[ ] [ ] [ ] [ ]T a x n a x n a T x n a T x n     (I.24) 

This equation can be generalized to the superposition of more than two inputs. Specifically, if 

 
1

[ ] [ ]
K

k k
k

x n a x n


   (I.25) 

then the output of a linear system will be 

 
1

[ ] [ ]
K

k k
k

y n a y n


   (I.26) 

where [ ]ky n  is the system response to the input [ ]kx n . 
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Example I-4 

The system defined by the input-output equation 

[ ] [ ]
n

k

y n x k


   

is called the accumulator system; since the output at time n  is just the sum of the present and all 
previous input samples. 

The accumulator system is a linear system. In order to prove this, we must show that it satisfies 
the superposition principle for all inputs, not just any specific set of inputs. We begin by defining 
two arbitrary inputs 1[ ]x n  and 2[ ]x n  and their corresponding outputs 

1 1[ ] [ ]
n

k

y n x k


   

2 2[ ] [ ]
n

k

y n x k


   

When the input is 3 1 1 2 2[ ] [ ] [ ]x n a x n a x n  , the superposition principle requires the output 

3 1 1 2 2[ ] [ ] [ ]y n a y n a y n   for all possible choices of 1a  and 2a . We can show this by starting 

from 

 

3 3

1 1 2 2

1 1 2 2

1 1 2 2

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

n

k

n

k

n n

k k

y n x k

a x k a x k

a x k a x k

a y n a y n





 



 

 

 





 

 

Thus, the accumulator system satisfies the superposition principle for all inputs, and is therefore a 
linear system. 

I.4.C. TIME-INVARIANT SYSTEMS 

A time-invariant system (often referred to equivalently as a shift-invariant system) is a system for 
which a time shift or delay of the input sequence causes a corresponding shift in the output 
sequence. Specifically, suppose that a system transforms the input sequence with values [ ]x n  into 

the output sequence with values [ ]y n . Then the system is said to be time invariant if, for all 0n , 

the input sequence with values 1 0[ ] [ ]x n x n n   produces the output sequence with values 

1 0[ ] [ ]y n y n n  . 
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Example I-5 

Consider the accumulator system in Example I-4. We define 1 0[ ] [ ]x n x n n  . To show time 

invariavce, we solve for both 0[ ]y n n  and 1[ ]y n  and compare them to see whether they are equal. 

First, 

0

0[ ] [ ]
n n

k

y n n x k



    

Next, we find 

1 1

0

[ ] [ ]

[ ]

n

k

n

k

y n x k

x k n







 




 

Substituting the change of variables 1 0k k n   into the summation gives 

0

1

1 1

0

[ ] [ ]

[ ]

n n

k

y n x k

y n n






 


 

Thus, the accumulator is a time-invariant system. 

Example I-6 

The system defined by the relation 

[ ] [ ],y n x Mn n       

with M  a positive integer, is called a compressor (or downsampler). Specifically, it discards 1M   
samples out of M ; i.e., it creates the output sequence by selecting every M th sample. This system 
is not time invariant. We can show that it is not by considering the response 1[ ]y n  to the input 

1 0[ ] [ ]x n x n n  . In order for the system to be time invariant, the output of the system when the 

input is 1[ ]x n  must be equal to 0[ ]y n n . The output 1[ ]y n  that results from the input 1[ ]x n  can 

be directly computed from the definition of [ ]y n  above to be 

1 1

0

[ ] [ ]

[ ]

y n x Mn

x Mn n


 

 

Delaying the output [ ]y n  by 0n  samples yields 

0 0[ ] [ ( )]y n n x M n n    



Mohammad M. Banat – EE 768: Digital Signal Processing for Communications 13 

I: DSP Background 

 I.4-Discrete-Time Systems 

 

 

Comparing these two outputs, we see that 0[ ]y n n  is not equal to 1[ ]y n  for all M  and 0n , and 

therefore, the system is not time invariant. 

It is also possible to prove that a system is not time invariant by finding a single counterexample 
that violates the time-invariance property. For instance, a counterexample for the compressor is 
the case when 2M  , [ ] [ ]x n n , and 1[ ] [ 1]x n n  . For these choices, [ ] [ ]y n n , but 

1[ ] 0y n  ; thus, it is clear that 1[ ] [ 1]y n y n   for this system. 

Exercise I-2 

Consider that the upsampler system 

,
[ ] ,

0, otherwise

n n
x

y n nM M

          



 

Show that this system is not time-invariant. 

I.4.D. CAUSAL SYSTEMS 

A system is causal if, for every choice of 0n , the output sequence value at the index 0n n  

depends only on the input sequence values for 0n n . This implies that if 1 2[ ] [ ]x n x n  for all 

0n n , then 1 2[ ] [ ]y n y n  for 0n n . That is, the system is non-anticipative. 

Example I-7 

Consider the forward difference system defined by the relationship 

[ ] [ 1] [ ]y n x n x n    

This system is not causal, since the current value of the output depends on a future value of the 
input. The violation of causality can be demonstrated by considering the two inputs 

1[ ] [ 1]x n n   and 2[ ] 0x n   and their corresponding outputs 1[ ] [ ] [ 1]y n n n     and 

2[ ] 0y n  . Note that 1 2[ ] [ ]x n x n  for 0n , so the definition of causality requires that 

1 2[ ] [ ]y n y n  for 0n , which is clearly not the case for 0n . Thus, by this counterexample, we 

have shown that the system is not causal. 

Example I-8 

The backward difference system, defined as 

[ ] [ ] [ 1]y n x n x n    

has an output that depends only on the present and past values of the input. Because there is no 
way for the output at a specific time 0[ ]y n  to incorporate values of the input for 0n n , the system 

is causal. 
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I.4.E. STABLE SYSTEMS 

A system is stable in the bounded-input, bounded-output (BIBO) sense if and only if every 
bounded input sequence produces a bounded output sequence. The input [ ]x n  is bounded if there 

exists a fixed positive finite value xB  such that 

 [ ] ,xx n B n    (I.27) 

Stability in the BIBO sense requires that, for every bounded input, there exist a fixed positive finite 
value yB  such that 

 [ ] ,yy n B n    (I.28) 

It is important to emphasize that the properties we have defined in this section are properties of 
systems, not of the inputs to a system. That is, we may be able to find inputs for which the 
properties hold, but the existence of the property for some inputs does not mean that the system 
has the property. For the system to have the property, it must hold for all inputs. 

For example, an unstable system may have some bounded inputs for which the output is bounded, 
but for the system to have the property of stability, it must be true that for all bounded inputs, the 
output is bounded. If we can find just one input for which the system property does not hold, then 
we have shown that the system does not have that property. 

I.5. Linear Time-Invariant (LTI) Systems 

A particularly important class of systems consists of those systems that are both linear and time 
invariant. These two properties in combination lead to especially convenient representations for 
such systems. Most importantly, this class of systems has significant signal-processing 
applications. 

If the linearity property is combined with the representation of a general sequence as a linear 
combination of delayed impulses as in (I.6), it follows that a linear system can be completely 
characterized by its impulse response. 

Specifically, let [ ]kh n  be the response of the system to [ ]n k  . Then, 

 [ ] [ ] [ ]
k

y n T x k n k




 
  

  
   (I.29) 

From the principle of superposition, 

 

 [ ] [ ] [ ]

[ ] [ ]

k

k
k

y n x k T n k

x k h n









 






  (I.30) 
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Therefore, the system response to any input can be expressed in terms of the responses of the 
system to the sequences [ ]n k  . If only linearity is imposed, [ ]kh n  will depend on both n  and 

k , in which case the computational usefulness of (I.30) is limited. We obtain a more useful result 
if we impose the additional constraint of time invariance. 

The property of time invariance implies that if [ ]h n  is the response to [ ]n , then the response to 
[ ]n k   is [ ]h n k . With this additional constraint, (I.30) becomes 

 

[ ] [ ] [ ]

[ ] [ ]

k

k

y n x k h n k

h k x n k








 

 




  (I.31) 

Equation (I.31) is commonly called the convolution sum. If [ ]y n  is a sequence whose values are 
related to the values of two sequences [ ]h n  and [ ]x n  as in (I.31), we say that [ ]y n  is the 
convolution of [ ]x n  with [ ]h n  and represent this by the notation 

 [ ] [ ] [ ]y n x n h n    (I.32) 

Equation (I.31) expresses each sample of the output sequence in terms all of the samples of the 
input and impulse response sequences. 

Although the convolution-sum expression is analogous to the convolution integral of continuous-
time linear system theory, the convolution sum should not be thought of as an approximation to 
the convolution integral. The convolution integral plays mainly a theoretical role in continuous-
time linear system theory; we will see that the convolution sum, in addition to its theoretical 
importance, often serves as an explicit realization of a discrete-time linear system. 

I.6. Properties of LTI Systems 

Since all linear time-invariant systems are described by the convolution sum, the properties of this 
class of systems are defined by the properties of discrete-time convolution. 

Convolution Operation is Commutative 

 [ ] [ ] [ ] [ ]x n h n h n x n     (I.33) 

Convolution Operation Distributes over Addition 

  1 2 1 2[ ] [ ] [ ] [ ] [ ] [ ] [ ]x n h n h n x n h n x n h n        (I.34) 

Cascade Connection 

In a cascade connection of systems, the output of the first system is the input to the second, the 
output of the second is the input to the third, etc. The output of the last system is the overall output. 
Two linear time-invariant systems in cascade correspond to a linear time-invariant system with an 
impulse response that is the convolution of the impulse responses of the two systems. 
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 1 2[ ] [ ] [ ]h n h n h n    (I.35) 

[ ]x n
1[ ]h n

[ ]x n
2[ ]h n

[ ]x n
1 2[ ] [ ]h n h n

2[ ]h n

1[ ]h n

[ ]y n

[ ]y n

[ ]y n

 
Figure I.3: Cascade Connection 

Parallel Connection 

In a parallel connection, the systems have the same input, and their outputs are summed to produce 
an overall output. It follows from the distributive property of convolution that the connection of 
two linear time-invariant systems in parallel is equivalent to a single system whose impulse 
response is the sum of the individual impulse responses; i.e., 

 1 2[ ] [ ] [ ]h n h n h n    (I.36) 

[ ]x n

[ ]x n

2[ ]h n

1[ ]h n

[ ]y n

1 2[ ] [ ]h n h n



[ ]y n

 
Figure I.4: Parallel Connection 

Stability and Causality 

The constraints of linearity and time invariance define a class of systems with very special 
properties. Stability and causality represent additional properties, and it is essential to know 
whether a linear time-invariant system is stable and whether it is causal. Recall that a stable system 
is a system for which every bounded input produces a bounded output. Linear time-invariant 
systems are stable if and only if the impulse response is absolutely summable, i.e., if 

 [ ]
k

S h k



     (I.37) 
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The class of causal systems was defined earlier to represent systems for which the output 0[ ]y n  

depends only on past samples of the input [ ]x n , i.e., for 0n n . It follows from (I.31) that this 

definition implies the following condition for causality of linear time-invariant systems. 

 [ ] 0, 0h n n     (I.38) 

For this reason, it is sometimes convenient to refer to a sequence that is zero for 0n   as a causal 
sequence, meaning that it could be the impulse response of a causal system. 

Although the impulse response of nonlinear or time-varying systems can be found, it is generally 
of limited interest, since the convolution-sum formula and (I.37) and (I.38), expressing stability 
and causality, do not apply to such systems. 

Ideal Delay 

 [ ] [ ]dy n x n n    (I.39) 

 [ ] [ ]dh n n n    (I.40) 

 1S    (I.41) 

System is stable. System is causal as long as 0dn  . 

Moving Average (MA) 

 
2

11 2

1
[ ] [ ]

1

M

k M

y n x n k
M M 

 
     (I.42) 

 
2

11 2

1
[ ] [ ]

1

M

k M

h n n k
M M




 
     (I.43) 

 1 2
1 2

1
,

1[ ]

0, otherwise

M n M
M Mh n

      


 (I.44) 

 1S    (I.45) 

System is stable. System is causal as long as 1 0M   and 2 0M  . 

Exercise I-3 

Write and execute Matlab code to simulate a moving average system with different values of 1M  

and 2M . 

 Feed the systems with different random and deterministic input signals. 
 Notice the smoothing effect of the MA system. 
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Accumulator 

 [ ] [ ]
n

k

y n x k


    (I.46) 

 
[ ] [ ]

[ ]

n

k

h n k

u n








   (I.47) 

 S     (I.48) 

System is unstable. System is causal. 

Forward Difference 

 [ ] [ 1] [ ]y n x n x n     (I.49) 

 [ ] [ 1] [ ]h n n n      (I.50) 

 2S    (I.51) 

System is stable. System is noncausal. 

Backward Difference 

 [ ] [ ] [ 1]y n x n x n     (I.52) 

 [ ] [ ] [ 1]h n n n      (I.53) 

 2S    (I.54) 

System is stable. System is causal. 

Exponential Impulse Response 

 [ ] [ ]nh n a u n  (I.55) 

 

0 0

[ ]

[ ]

1
, if 1

1

k

k

k

kk

k k

S h k

a u k

a a a
a







 

 





   






 

  (I.56) 

System is stable only if 1a  . System is causal. 
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For the ideal delay, moving-average, forward difference, and backward difference examples, it is 
clear that S   , since the impulse response has only a finite number of nonzero samples. Such 
systems are called finite-duration impulse response (FIR) systems. Clearly, FIR systems will 
always be stable, as long as each of the impulse response values is finite in magnitude. 

Exercise I-4 

Consider the generalized form of an MA system 

2

11 2

1
[ ] [ ]

1

M

k
k M

y n a x n k
M M 

 
    

where 2

1

M
k k M

a   are constants. This is actually an FIR system. Specify the parameters of the ideal 

delay, forward difference, and backward difference systems ( 1M , 2M  and 1

2

M
k k M

a  ) such that 

these systems are seen as special cases of this FIR system. 

The accumulator, however, is unstable because S   . The impulse response of the accumulator 
is infinite in duration. This is an example of the class of systems referred to as infinite-duration 
impulse response (IIR) systems. Not all IIR systems are unstable. An example of an IIR system 
that is stable is a system whose impulse response is 

 [ ] [ ], 1nh n a u n a    (I.57) 

In this case, 

 0

1

1

n

k

S a

a






  



  (I.58) 

Note that if 1a  , the series in (I.58) diverges and the system is unstable. 

Noncausal to Causal Conversion 

Consider the system in Figure I.5 below which consists of a forward difference system cascaded 
with an ideal delay of one sample. 
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 One-Sample 
Delay

Forward 
Difference

[ ]y n[ ]x n

Forward 
Difference

One-Sample 
Delay

[ ]y n[ ]x n

Backward 
Difference

[ ]x n [ ]y n

(a)

(b)

(c)  
Figure I.5: Noncausal to Causal Conversion 

According to the commutative property of convolution, the order in which systems are cascaded 
does not matter, as long as they are linear and time invariant. Therefore, we obtain the same result 
when we compute the forward difference of a sequence and delay the result (part a) as when we 
delay the sequence first and then compute the forward difference (part b). 

The overall impulse response of the cascade system is 

 
 [ ] [ 1] [ ] [ 1]

[ ] [ 1]

h n n n n

n n

  

 

    

  
  (I.59) 

Thus, ( )h n  is identical to the impulse response of the backward difference system; that is, the 
cascaded systems of part (a) and part (b) can be replaced by a backward difference system, as 
shown in part (c). Note that the noncausal forward difference systems in parts a and b have been 
converted to causal systems by cascading them with a delay. In general, any noncausal FIR system 
can be made causal by cascading it with a sufficiently long delay. 

Inverse System 

Consider the cascade of systems in Figure I.6 below. 

[ ]x n [ ]x n
[ ]y n

Backward
Difference

Accumulator
 

Figure I.6: Inverse System Example 

The impulse response of the cascade system is 

 

 [ ] [ ] [ ] [ 1]

[ ] [ 1]

[ ]

h n u n n n

u n u n

n

 



   

  


  (I.60) 

That is, the cascade combination of an accumulator followed by a backward difference (or vice 
versa) yields a system whose overall impulse response is the impulse. Thus, the output of the 
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cascade combination will always be equal to the input. In this case, the backward difference system 
compensates exactly for (or inverts) the effect of the accumulator; that is, the backward difference 
system is the inverse system for the accumulator. From the commutative property of convolution, 
the accumulator is likewise the inverse system for the backward difference system. 

I.7. Linear Constant-Coefficient Difference Equations 

I.7.A. GENERAL EQUATION 

An important subclass of linear time-invariant systems consists of those systems for which the 
input [ ]x n  and the output [ ]y n  satisfy a linear constant-coefficient difference equation of the form 

 
0 0

[ ] [ ]
K M

k m
k m

a y n k b x n m
 

      (I.61) 

Example I-9 

For the accumulator, 

 
[ ] [ 1] [ ]

[ ] [ 1] [ ]

y n y n x n

y n y n x n

  
  

 (I.62) 

Note that 

1K  , 0M  , 0 1a  , 1 1a   , 0 1b   

Exercise I-5 

Determine the difference equation representation of the moving average system. Note that there 
can be more than one answer. 

Sketch a block diagram of the moving average system. 

A linear constant coefficient difference equation for discrete-time systems does not provide a 
unique specification of the output for a given input. Specifically, suppose that, for a given input 

[ ]px n , we have determined by some means one output sequence [ ]py n , so that an equation of the 

form of (I.61) is satisfied. Let [ ]hy n  be the solution to (I.61) when [ ] 0x n  , i.e., 

 
0

[ ] 0
K

k h
k

a y n k


    (I.63) 

Equation (I.63) is referred to as the homogeneous equation and [ ]hy n  the homogeneous solution. 

Clearly enough, the output [ ] [ ] [ ]p hy n y n y n   and the input [ ] [ ]px n x n  satisfy (I.61), 

meaning that [ ] [ ] [ ]p hy n y n y n   can be the system response to [ ]px n . 

The sequence [ ]hy n  is in fact a member of a family of solutions of the form 
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1

[ ]
K

n
h l l

l

y n A z


   (I.64) 

Substituting (I.64) into (I.63) shows that the complex numbers lz  must be roots of the polynomial 

 
0

0
K

k
k

k

a z 


   (I.65) 

Equation (I.64) assumes that all K  roots of the polynomial in (I.65) are distinct. The form of terms 
associated with multiple roots is slightly different, but there are always K  undetermined 
coefficients. Since [ ]hy n  has K  undetermined coefficients, a set of K  auxiliary conditions is 

required for the unique specification of [ ]y n  for a given [ ]x n . 

I.7.B. RECURSIVE COMPUTATION OF DIFFERENCE EQUATIONS 

Consider the difference equation 

 [ ] [ 1] [ ]y n ay n x n     (I.66) 

Let the input sequence be [ ] [ ]x n G n , where G  is an arbitrary constant. Let [ 1]y c  , where c 
is an arbitrary constant. Beginning with this value, the output for 1n    can be computed 
recursively be first rewriting (I.66) in the form 

 [ ] [ 1] [ ]y n ay n x n     (I.67) 

Then, 

[0]y ac G   

2[1]y a c aG   

 
1[ ] n ny n a c a G   

To determine the output for 0n  , we express the difference equation in the form 

 
 

 

1

1

[ 1] [ ] [ ]

[ ] [ 1] [ 1]

y n a y n x n

y n a y n x n





  

   
  (I.68) 

Using the auxiliary condition [ 1]y c  , we can compute [ ]y n  for 1n    as follows: 

1[ 2]y a c   

2[ 3]y a c   

 
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1[ ] ny n a c  

Combining the results for 0n   and 0n  , we obtain 

 1[ ] [ ],n ny n a c a Gu n n     (I.69) 

Several important points are illustrated by the above procedure. First, note that we implemented 
the system by recursively computing the output in both the positive and the negative directions, 
beginning with 1n   . Clearly, this procedure is noncausal. Also, note that when 0G   (zero 

input), 1[ ] ny n a c  . A linear system requires that the output be zero for all time when the input 
is zero for all time. Consequently, this system is not linear. Furthermore, if the input were shifted 
by 0n  samples, i.e., 1 0[ ] [ ]x n G n n  , the output would be 

 
01

1 0

0

[ ] [ ]

[ ]

n nny n a c Ga u n n

y n n

  

 
  (I.70) 

The system is therefore not time invariant. 

Our principal interest is in systems that are linear and time invariant, in which case the auxiliary 
conditions must be consistent with these additional requirements. When we discuss the solution of 
difference equations using the z-transform, we implicitly incorporate conditions of linearity and 
time invariance. As we will see in that discussion, even with the additional constraints of linearity 
and time invariance, the solution to the difference equation, and therefore the system, is not 
uniquely specified. In particular, there are in general, both causal and noncausal linear time-
invariant systems consistent with a given difference equation. 

If a system is characterized by a linear constant-coefficient difference equation and is further 
specified to be linear, time invariant, and causal, the solution is unique. In this case, the auxiliary 
conditions are often stated as initial-rest conditions. 

Exercise I-6 

Assuming initial-rest conditions, solve the difference equation 

[ ] [ 1] [ ]y n ay n G n    

Study linearity, causality and time invariance of the system. 

I.8. Frequency Domain Representation of Discrete-time Signals and Systems 

As with continuous-time signals, discrete-time signals may be represented in a number of different 
ways. For example, sinusoidal and complex exponential sequences play a particularly important 
role in representing discrete-time signals. This is because complex exponential sequences are 
eigenfunctions of linear time-invariant systems, and the response to a sinusoidal input is sinusoidal 
with the same frequency as the input and with amplitude and phase that are determined by the 
system. 
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Consider an input sequence [ ] j nx n e   for n    . The corresponding output of a linear 
time-invariant system with impulse response [ ]h n  is 

 

( )[ ] [ ]

[ ]

j n k

k

j n j k

k

y n h k e

e h k e



 


















  (I.71) 

Let’s define 

 ( ) [ ]j j k

k

H e h k e 





    (I.72) 

Note that ( )jH e   depends only on the system impulse response and the input frequency. ( )jH e   
is called the frequency response of the system. Note that the output can be written in the form 

 [ ] ( )j j ny n H e e    (I.73) 

Consequently, j ne   is an eigenfunction of the system, and the associated eigenvalue is ( )jH e  . 

In general, ( )jH e   is complex and can be expressed in terms of its real and imaginary parts as 

 ( ) ( ) ( )j j j
R IH e H e jH e      (I.74) 

( )jH e   can also be written in terms of its magnitude and phase as 

 ( )( ) ( )
jj j j H eH e H e e
     (I.75) 

Exercise I-7 

 Determine and sketch the magnitude and phase of the frequency response of the ideal delay 
system. 

 Determine and sketch the magnitude and phase of the frequency response of the backward 
difference system. 

A broad class of signals can be represented as a linear combination of complex exponentials in the 
form 

 [ ] kj n
k

k

x n e    (I.76) 

From the principle of superposition, the corresponding output of a linear time-invariant system is 

 [ ] ( )k kj j n
k

k

y n H e e    (I.77) 
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Exercise I-8 

1- Determine the response of an LTI system to a sinusoidal input of the form 
   1 1 1 2 2 2[ ] cos cosx n A n A n       . 

2- What is the output when the system is an ideal delay? 
3- What is the output when [ ] [ ]nh n u n , where   is generally complex with 1  ? 

The concept of the frequency response of linear time-invariant systems is essentially the same for 
continuous-time and discrete-time systems. However, an important distinction arises because the 
frequency response of discrete-time linear time-invariant systems is always a periodic function of 
the frequency variable with period 2 . The periodicity of ( )jH e   can be seen from (I.72). It, 

therefore, follows that we need to specify ( )jH e   only over an interval of length 2 , e.g., 

0 2    or      . It is generally convenient to specify ( )jH e   over the interval 
     . With respect to this interval, the “low frequencies” are frequencies close to zero, 

while the “high frequencies” are frequencies close to  . 

Assignment I.1 

Frequency Response of Ideal Frequency Selective Filters: e.g., LPF, HPF, … 

I.9. Representation of Sequences by Fourier Transforms 

Many sequences can be represented by a Fourier integral of the form 

 
1

[ ] ( )
2

j j nx n X e e d


 








    (I.78) 

where 

 ( ) [ ]j j n

n

X e x n e 





    (I.79) 

Equations (I.78) and (I.79) form a Fourier representation for the sequence. Equation (I.78), the 
inverse Fourier transform, is a synthesis formula, while (I.79) is an analysis formula. In general, 
the Fourier transform is a complex-valued function of  . As with the frequency response, we may 

either express ( )jX e   in rectangular form as 

 ( ) ( ) ( )j j j
R IX e X e jX e      (I.80) 

or in polar form as 

 ( )( ) ( )
jj j j X eX e X e e
     (I.81) 
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The Fourier transform is sometimes referred to as the Fourier spectrum or, simply, the spectrum. 
Also, the terminology magnitude spectrum or amplitude spectrum is sometimes used to refer to 

( )jX e  , and the angle or phase ( )jX e   is sometimes called the phase spectrum. 

The frequency response of a linear time-invariant system is simply the Fourier transform of the 
impulse response and, therefore, the impulse response can be obtained from the frequency response 
by applying the inverse Fourier transform integral; i.e., 

 
1

[ ] ( )
2

j j nh n H e e d


 








    (I.82) 

Equation (I.79) is of the form of a Fourier series for the continuous-variable periodic function 

( )jX e  , and (I.78), which expresses the sequence values [ ]x n  in terms of the periodic function 

( )jX e  , is of the form of the integral that would be used to obtain the coefficients in the Fourier 
series. 

Exercise I-9 

Show that equations (I.78) and (I.79) are indeed inverses of each other. 

Show that for [ ]x n  to have a Fourier transform ( )jX e  , ( )x n  must be absolutely summable, i.e., 

[ ]
n

x n



   

Since a stable sequence is, by definition, absolutely summable, all stable sequences have Fourier 
transforms. It also follows, then, that any stable system will have a finite continuous periodic 
frequency response. 

Absolute summability is a sufficient condition for the existence of a Fourier transform 
representation. Clearly, any finite length sequence with finite sequence values is absolutely 
summable and thus will have a Fourier transform representation. In the context of linear time-
invariant systems, any FIR system with finite impulse response values will be stable and therefore 
will have a finite continuous periodic frequency response. When a sequence has infinite length, 
we must be concerned about convergence of the infinite sum. 

Absolute summability is a sufficient condition for the existence of a Fourier transform 
representation. Some sequences are not absolutely summable, but are square summable, i.e., 

 
2

[ ]
n

x n



    (I.83) 

Such sequences can be represented by a Fourier transform if we are willing to relax the condition 
of uniform convergence of the infinite sum defining ( )jX e  . Specifically, in this case we have 
mean-square convergence; that is, with 
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 ( ) [ ]j j n

n

X e x n e 





    (I.84) 

and 

 ( ) [ ]
M

j j n
M

n M

X e x n e 


    (I.85) 

we have 

 
2

lim ( ) ( ) 0j j
M

M
X e X e d


 








    (I.86) 

Exercise I-10 

Determine the Fourier transforms of: 

1. [ ] 1,x n n       

2. 0[ ] ,j nx n e n       
3. [ ] [ ]x n u n  

I.10. Symmetry Properties of the Fourier Transform 

A conjugate-symmetric sequence [ ]ex n  is defined as a sequence for which 

 [ ] [ ]e ex n x n    (I.87) 

A conjugate-anti-symmetric sequence [ ]ox n  is defined as a sequence for which 

 [ ] [ ]o ox n x n     (I.88) 

Any sequence [ ]x n  can be expressed as a sum of a conjugate-symmetric and conjugate-anti-
symmetric sequence. Specifically, 

 [ ] [ ] [ ]e ox n x n x n    (I.89) 

where 

 
1

[ ] [ ] [ ]
2ex n x n x n       (I.90) 

 
1

[ ] [ ] [ ]
2ox n x n x n       (I.91) 

A real sequence that is conjugate symmetric is called an even sequence, and a real sequence that 
is conjugate anti-symmetric is called an odd sequence. 
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A Fourier transform ( )jX e   can be decomposed into a sum of conjugate-symmetric and 
conjugate-anti-symmetric functions as 

 ( ) ( ) ( )j j j
e oX e X e X e      (I.92) 

where 

 
1

( ) ( ) ( )
2

j j j
eX e X e X e         (I.93) 

 
1

( ) ( ) ( )
2

j j j
oX e X e X e         (I.94) 

Note that 

 ( ) ( )j j
e eX e X e     (I.95) 

 ( ) ( )j j
o oX e X e      (I.96) 

Table I.1: Symmetry Properties of the Fourier Transform 

Sequence Fourier Transform 

[ ]x n   ( )jX e    

[ ]x n  ( )jX e    

[ ]x n   ( )jX e   

 Re [ ]x n  ( )j
eX e   

 Im [ ]j x n  ( )j
oX e   

[ ]ex n   ( ) Re ( )j j
RX e X e    

[ ]ox n   ( ) Im ( )j j
IjX e j X e   

Symmetry Properties of Fourier Transforms of Real Sequences 

In all the equations below, [ ]x n  is assumed to be real-valued. 

 ( ) ( )j j
R RX e X e    (I.97) 

 ( ) ( )j j
I IX e X e     (I.98) 
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 ( ) ( )j jX e X e    (I.99) 

 ( ) ( )j jX e X e      (I.100) 

  [ ] ( )j
e Rx n X e F   (I.101) 

  [ ] ( )j
o Ix n jX e F   (I.102) 

I.11. Fourier Transform Theorems 

Linearity of the Fourier Transform 

If 

1 1

2 2

[ ] ( )

[ ] ( )

j

j

x n X e

x n X e





F

F




  

then, 

 1 1 2 2 1 1 2 2[ ] [ ] ( ) ( )j ja x n a x n a X e a X e  F   (I.103) 

Time Shifting and Frequency Shifting 

 [ ] ( )dj n j
dx n n e X e  F   (I.104) 

 0 0( )[ ] ( )j n je x n X e  F   (I.105) 

Time Reversal 

 [ ] ( )jx n X e  F   (I.106) 

Parseval’s Theorem 

 
22 1

[ ] ( )
2

j

n

x n X e d











 

    (I.107) 

The function 
2

( )jX e   is called the energy density spectrum, since it determines how the energy 

is distributed in the frequency domain. Necessarily, the energy density spectrum is defined only 
for finite-energy signals. 

Convolution Theorem 

 [ ] [ ] ( ) ( )j jx n h n X e H e  F   (I.108) 
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( )

1
[ ] [ ] ( ) ( )

2

1
( ) ( )

2

j j

j j

x n g n X e G e

X e G e d

 


  














 

F
  (I.109) 

The operation [ ] [ ]x n g n  is known as modulation or windowing. Equation (I.109) is a periodic 
convolution, i.e., a convolution of two periodic functions with the limits of integration extending 
over only one period. 

In contrast to the continuous-time case, where this duality is complete, in the discrete-time case 
fundamental differences arise because the Fourier transform is a sum while the inverse transform 
is an integral with a periodic integrand. Although for continuous time we can state that convolution 
in the time domain is represented by multiplication in the frequency domain and vice versa, in 
discrete time this statement must be modified somewhat. Specifically, discrete-time convolution 
of sequences (the convolution sum) is equivalent to multiplication of corresponding periodic 
Fourier transforms, and multiplication of sequences is equivalent to periodic convolution of 
corresponding Fourier transforms. 

Exercise I-11 

Determine 

1. the DTFT of 2[ ] [ 3]nx n a u n   

2. the IDTFT of 
  

( )j
j j

c
X e

a e b e


  


 

 

3. the impulse response when the frequency response is 
0 ,

( )
0,

j n
j c

c

e
H e


   

 

   


  

4. the impulse response when  1 1
[ ] [ 2] [ ] 3

2 3
y n y n x n x n      

Table I.2: Properties of the Fourier Transform 

Sequence Fourier Transform 

[ ]x n   ( )jX e    

[ ]y n  ( )jY e   

[ ] [ ]ax n by n  ( ) ( )j jaX e bY e   

[ ]dx n n  ( )dj n je X e   

0 [ ]j ne x n  0( )( )jX e    

[ ]x n  ( )jX e   
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[ ]nx n  
( )jd

j X e
d




 

[ ] [ ]x n y n  ( ) ( )j jX e Y e   

[ ] [ ]x n y n  
( )1

( ) ( )
2

j jX e Y e d


  









  

Parseval’s Theorem 

 
22 1

[ ] ( )
2

j

n

x n X e d











 

    (I.110) 

 
1

[ ] [ ] ( ) ( )
2

j j

n

x n y n X e Y e d


 







 

 

    (I.111) 

Table I.3: Fourier Transform Pairs 

Sequence Fourier Transform 

[ ]n   1  

0[ ]n n   0j ne   

1 
2 ( 2 )

k

k   



  

[ ], 1na u n a   1

1 jae 
  

[ ]u n   1
( 2 )

1 j
k

k
e     






 


   

( 1) [ ], 1nn a u n a    
2

1

(1 )jae 
  

sin ( 1)
[ ], 1

sin

n
p

p

r n
u n r





   2 2

1

1 2 cos j j
pr e r e    

  

sin cn

n




  1,

0,
c

c

 
  

 
  
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1, 0

0, otherwise

n M 



  
  2sin ( 1) 2

sin( 2)
j MM

e 



  

0j ne   
02 ( 2 )

k

k    



    

0cos( )n    
0 0( 2 ) ( 2 )j j

k

e k e k         






         

I.12. Discrete-Time Random Signals 

In many situations, the processes that generate signals are complex enough to make precise 
description of a signal extremely difficult or undesirable, if not impossible. In such cases, modeling 
the signal as a stochastic process is analytically useful. The term stochastic process, or random 
process, is used to describe the time evolution of a statistical phenomenon according to 
probabilistic laws. The time evolution of the phenomenon means that the stochastic process is a 
function of time, defined on some observation interval. The statistical nature of the phenomenon 
means that, before conducting an experiment, it is not possible to define exactly the way it evolves 
in time. Examples of a stochastic process include speech signals, television signals, radar signals, 
digital computer data, the output of a communication channel, seismological data, and noise. 

The form of a stochastic process that is of interest to us is one that is defined at discrete and 
uniformly spaced instants of time. Such a restriction may arise naturally in practice, as in the case 
of digital computer data. Alternatively, the stochastic process may be defined originally for a 
continuous range of values of time; however, before processing, it is sampled uniformly in time, 
with the sampling rate chosen to be greater than twice the highest frequency component of the 
process. 

A stochastic signal is considered to be a member of an infinite ensemble of discrete-time signals 
that is characterized by a set of probability density functions. More specifically, for a particular 
signal at a particular time, the amplitude of the signal sample at that time is assumed to have been 
determined by an underlying scheme of probabilities. For convenience of notation, we normalize 
time with respect to the sampling period. Each individual sample [ ]x n  of a particular signal is 

assumed to be an outcome of some underlying random variable nx . The entire signal is represented 

by a collection of such random variables, one for each sample time, n    . This collection 
of random variables is called a random process. To completely describe the random process, we 
need to specify the individual and joint probability distributions of all the random variables. 

An individual random variable nx  is described by the cumulative distribution function (CDF) 

  ( , ) Pr
nx n n nF n x    (I.112) 

If nx  takes on a continuous range of values, it is equivalently specified by the probability density 

function 
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( , )

( , ) n

n

x
x

F x n
f x n

x





 (I.113) 

The interdependence of two random variables nx  and mx  of a random process is described by the 

joint CDF 

  , ( , , , ) Pr ,
n mx x n m n n m mF n m x x       (I.114) 

The two random variables have the joint probability density function 

 
,

,

( , , , )
( , , , ) n m

n m

x x
x x

F x n y m
f x n y m

x y




 
 (I.115) 

Two random variables are statistically independent if knowledge of the value of one does not affect 
the probability density of the other 

 , ( , , , ) ( , ) ( , )
n m n mx x n m x n x mF n m F n F m     (I.116) 

A complete characterization of a random process requires the specification of all possible joint 
distributions. As we have indicated, these distributions may be functions of the time indices. In the 
case where all the distributions are independent of a shift of time origin, the random process is said 
to be stationary. For example, the second-order distribution of a stationary process satisfies 

 , ,( , , , ) ( , , , )
n k m k n mx x n k m k x x n mF n m F n m   
      (I.117) 

In many applications of discrete-time signal processing, random processes serve as models for 
signals in the sense that a particular signal can be considered a sample sequence of a random 
process. Although the details of such signals are unpredictable – making a deterministic approach 
to signal representation inappropriate – certain average properties of the ensemble can be 
determined, given the probability law of the process. These average properties often serve as a 
useful, although incomplete, characterization of such signals. 

I.12.A. STATISTICAL AVERAGES 

The average, or mean, of a random process is defined as 

 

 E

( )

n

n

x n

x

x

xf x dx








 
 (I.118) 

 

Stochastic signals are not absolutely summable nor square summable and, consequently, do not 
directly have Fourier transforms. Many (but not all) of the properties of such signals can be 
summarized in terms of averages such as the autocorrelation or auto covariance sequence, for 
which the Fourier transform often exists. The Fourier transform of the autocovariance sequence 
has a useful interpretation in terms of the frequency distribution of the power in the signal. The 
use of the autocovariance sequence and its transform has another important advantage: The effect 
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of processing stochastic signals with a discrete-time linear system can be conveniently described 
in terms of the effect of the system on the autocovariance sequence. 

Read 

Appendix A – Oppenheim 

We focus on wide-sense stationary random signals and their representations in the context of 
processing with linear time-invariant systems. 

Consider a stable linear time-invariant system with real impulse response [ ]h n . Let [ ]x n  be a real-
valued sequence that is a sample sequence of a wide-sense stationary discrete-time random 
process. Then the output of the linear system is also a sample function of a random process related 
to the input process by the linear transformation 

 

[ ] [ ] [ ]

[ ] [ ]

k

k

y n h n k x k

h k x n k








 

 




  (I.119) 

The input signal may be characterized by its mean xm  and its autocorrelation function [ ]xx m , 

or we may also have additional information about first- or even second-order probability 
distributions. In characterizing the output random process [ ]y n  we desire similar information. For 
many applications, it is sufficient to characterize both the input and output in terms of simple 
averages, such as the mean, variance, and autocorrelation. 

The mean of the output process is 

 

 

 

[ ] E [ ]

[ ]E [ ]

[ ] [ ]

[ ] [ ]

y

k

x
k

x

m n y n

h k x n k

h k m n k

h n m n










 

 

 




  (I.120) 

Since the input is stationary, 

 [ ]x xm n k m    (I.121) 

Consequently, 

 
0

[ ] [ ]

( )

y x
k

j
x

m n m h k

m H e









  (I.122) 
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The mean of the output is constant. The autocorrelation function of the output process (assuming 
a real input) is 

 

 [ , ] E [ ] [ ]

E [ ] [ ] [ ] [ ]

[ ] [ ]E [ ] [ ]

yy

k r

k r

n n m y n y n m

h k h r x n k x n m r

h k h r x n k x n m r


 

 

 

 

  

 
    

  

   

 

 

  (I.123) 

Since [ ]x n  is assumed to be stationary,  E [ ] [ ]x n k x n m r    depends only on the time 

difference m k r  . Therefore, 

 
[ , ] [ ] [ ] [ ]

[ ]

yy xx
k r

yy

n n m h k h r m k r

m

 



 

 
   



 
  (I.124) 

That is, the output autocorrelation sequence also depends only on the time difference m . Thus, for 
a linear time-invariant system having a wide-sense stationary input, the output is also wide-sense 
stationary. 

By making the substitution l r k  , 

 

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

yy xx
l k

xx hh
l

xx hh

m m l h k h l k

m l c l

m c m

 





 

 




  

 

 

 

   (I.125) 

where 

 [ ] [ ] [ ]hh
k

c l h k h l k



    (I.126) 

The sequence [ ]hhc l  is called a deterministic (or time) correlation sequence or, simply, the 

correlation sequence of [ ]h n . It should be emphasized that [ ]hhc l  is the time correlation of an 

aperiodic, finite-energy-sequence and should not be confused with the autocorrelation of an 
infinite-energy random sequence. It can also be seen that 

 [ ] [ ] [ ]hhc l h l h l     (I.127) 

The last result allows (I.125) to be rewritten as 

 [ ] [ ] [ ] [ ]yy xxm m h m h m      (I.128) 
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Assume, for convenience, that 0xm  ; i.e., the autocorrelation and autocovariance sequences are 

identical. Then, 

 ( ) ( ) ( )j j j
yy hh xxe C e e       (I.129) 

From (I.127), we have 

 2

( ) ( ) ( )

( )

j j j
hh

j

C e H e H e

H e

  






  (I.130) 

Therefore, 

 
2

( ) ( ) ( )j j j
yy xxe e H e      (I.131) 

Note that the total average output power is equal to 

 

2E [ ] [0]

1
( )

2

yy

j
yy

y n

e d













   

 
  (I.132) 

Substituting (I.131) into (I.132), 

 
22 1

E [ ] ( ) ( )
2

j j
xxy n e H e d


 








        (I.133) 

Exercise I-12 

A zero-mean white noise sequence [ ]x n  with an autocorrelation function 2[ ] [ ]xx xm m    is the 

input of an ideal BPF that passes frequencies a b    . Determine 

1. the average noise power at the filter input 
2. the output noise power spectral density 
3. the average output noise power 
4. the output noise autocorrelation function 

Exercise I-13 

Repeat the exercise above if the BPF is replaced by a filter whose frequency response is 
1

( )
1

j
j

H e
ae





. Furthermore, sketch the magnitude and phase responses of the filter. 

The cross-correlation between the input and output of a linear time-invariant system is given by 
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 [ ] E [ ] [ ]

E [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

xy

k

xx
k

xx

m x n y n m

x n h k x n m k

h k m k

m h m















 

 
   

  

 

 




  (I.134) 

Using the DTFT, 

 ( ) ( ) ( )j j j
xy xxe H e e       (I.135) 

This result has a useful application when the input is white noise, i.e., when 2[ ] [ ]xx xm m   . In 

this case 

 2[ ] [ ]xy xm h m    (I.136) 

That is, for a zero-mean white-noise input, the cross-correlation between input and output of a 
linear system is proportional to the impulse response of the system. Similarly, the power spectrum 
of a white-noise input is 

 2( ) ( )j j
xy xe H e     (I.137) 

In other words, the cross power spectrum is in this case proportional to the frequency response of 
the system. 

 

*** 
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II. THE Z-TRANSFORM 

II.1. Definitions and Region of Convergence 

The z-transform of a sequence ( )x n  is defined as 

 ( ) [ ] n

n

X z x n z





    (II.1) 

This equation is, in general, an infinite sum or infinite power series, with z  being a complex 
variable. The correspondence between a sequence and its z-transform is indicated by the notation 

 [ ] ( )x n X zZ   (II.2) 

The z-transform, as we have defined it in (II.1), is often referred to as the two-sided or bilateral z-
transform, in contrast to the one-sided or unilateral z-transform, which is defined as 

 
0

( ) [ ] n

n

X z x n z





   (II.3) 

If we replace the complex variable z  in (II.1) with the complex variable je  , then the z-transform 

reduces to the Fourier transform. This is one motivation for the notation ( )jX e   for the Fourier 

transform; when it exists, the Fourier transform is simply ( )X z  with jz e  . This corresponds 

to restricting z  to have unity magnitude; i.e., for 1z  , the z-transform corresponds to the Fourier 

transform. 

We can express the complex variable z  in polar form as 

 jz re    (II.4) 

Therefore, 

 

 

 

( ) [ ]

[ ]

nj j

n

n j n

n

X re x n re

x n r e

 



 




 










  (II.5) 

In the z-plane, the contour corresponding to 1z   is a circle of unit radius: 
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Unit Circle

 Re z

 Im z



jz e 

1

 
Figure II.1: Unit circle in z-plane 

The z-transform evaluated on the unit circle corresponds to the Fourier transform. Note that   is 
the angle between the vector to a point z  on the unit circle and the real axis of the complex z-
plane. 

Interpreting the Fourier transform as the z-transform on the unit circle in the z-plane corresponds 
conceptually to wrapping the linear frequency axis around the unit circle with 0   at 1z   and 
   at 1z   . With this interpretation, the inherent periodicity in frequency of the Fourier 
transform is captured naturally, since a change of angle of 2  radians in the z-plane corresponds 
to traversing the unit circle once and returning to exactly the same point. 

The z-transform does not converge for all sequences or for all values of z . For any given sequence, 
the set of values of z  for which the z-transform converges is called the region of convergence, 
which we abbreviate ROC. For convergence of the z-transform, 

 ( ) n

n

x n r





    (II.6) 

Because of the multiplication of the sequence by the real exponential nr  , it is possible for the z-
transform to converge even if the Fourier transform does not. 

For example, the sequence ( ) ( )x n u n  is not absolutely summable, and therefore, the Fourier 

transform does not converge absolutely. However, ( )nr u n  is absolutely summable if 1r  . This 

means that the z-transform for the unit step exists with a region of convergence 1z  . 

Convergence of z-transform depends only on z , since ( )X z    if 

 ( )
n

n

x n z





    (II.7) 
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i. e., the region of convergence consists of all values of z  such that the inequality in (II.7) holds. 
Thus, if some value 1z z  is in the ROC, then all values of z  on the circle defined by 1z z  

will also be in the ROC. As one consequence of this, the region of convergence will consist of a 
ring in the z-plane centered about the origin. Its outer boundary will be a circle (or the ROC may 
extend outward to infinity), and its inner boundary will be a circle (or it may extend inward to 
include the origin). 

text  Re z

 Im z

 

Figure II.2: Ring region of convergence 

If the ROC includes the unit circle, this implies convergence of the z-transform for 1z  , or 

equivalently, the Fourier transform of the sequence converges. Conversely, if the ROC does not 
include the unit circle, the Fourier transform does not converge absolutely. 

Among the most important and useful z-transforms are those for which ( )X z  is a rational function 
inside the region of convergence, i.e., 

 
( )

( )
( )

P z
X z

Q z
   (II.8) 

where ( )P z  and ( )Q z  are polynomials in z . The values of z  for which ( ) 0X z   are called the 
zeros of ( )X z , and the values of z  for which ( )X z  is infinite are called the poles of ( )X z . The 
poles of ( )X z  for finite values of z  are the roots of the denominator polynomial. In addition, 
poles may occur at 0z   or z   . For rational z-transforms, a number of important relationships 
exist between the locations of poles of ( )X z  and the region of convergence of the z-transform. 

Example II-1 

Let ( ) ( )nx n a u n . This is a right-sided sequence. 
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 
0

1

0

( ) n n

n

n

n

X z a z

az


















 

For convergence, we must have 

1 1az    

which means that 

z a  

When the sequence is convergent, 

1

1
( )

1
X z

az 



 

The DTFT is evaluated when 1z  . Therefore, the DTFT sum converges when 1a  . Note that

( )
z

X z
z a




 

Therefore, there is a pole at z a  and a zero at 0z  . 

Exercise II-1 

Repeat the example above for the left-sided sequence ( ) ( 1)nx n a u n    . 

In the above, the algebraic expressions for ( )X z  and the corresponding pole-zero plots are 
identical for the right-sided and left-sided sequences. The only difference is in the region of 
convergence. This emphasizes the need for specifying both the algebraic expression and the region 
of convergence for the z-transform of a given sequence. Also, in both cases, the sequences were 
exponentials and the resulting z-transforms were rational. In fact, ( )X z  will be rational whenever 

( )x n  is a linear combination of real or complex exponentials. 

Exercise II-2 

Determine the z-transform and its ROC of the sequence 
1 1

( ) ( ) ( )
2 3

n n

x n u n u n
       

   
. 

Exercise II-3 

Determine the z-transform and its ROC of the sequence ( ) ( ) ( 3)x n n n    . 

Exercise II-4 

Determine the poles of 
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 1
( )

N N
X z

a z



, where 1N   is an integer. 

 1 21 1
( ) 1

2 3
X z z z    . 

II.1.A. INSPECTION METHOD 

The inspection method consists simply of becoming familiar with, or recognizing “by inspection”, 
certain transform pairs. It is known that 

 
1

1
( ) ,

1
na u n z a

az  


Z   (II.9) 

If we need to find the inverse z-transform of 

 
1

1 1
( ) ,

1 21
2

X z z
z 

 


  (II.10) 

we would recognize “by inspection” the associated sequence as 

 
1

( ) ( )
2

n

x n u n   
 

  (II.11) 

II.1.B. PARTIAL FRACTIONS EXPANSION 

When ( )X z  is a rational function, we can obtain a partial fraction expansion and easily identify 
the sequences corresponding to the individual terms. Let 

 0

0

( )

M
k

k
k
N

k
k

k

b z

X z

a z













  (II.12) 

An equivalent expression is 

 0

0

( )

M
N M k

k
k

N
M N k

k
k

z b z

X z

z a z













  (II.13) 

Equation (II.13) explicitly shows that for such functions, there will be M  zeros and N  poles at 
nonzero locations in the z-plane. In addition, there will be either M N  poles at 0z   if M N  
or N M  zeros at 0z   if N M . In other words, z-transforms of the form of (II.12) always 
have the same number of poles and zeros in the finite z-plane. 
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It is most convenient to note that ( )X z  could be expressed in the form 

 

 

 

1

0 1

0 1

1

1

( )

1

M

k
k
N

k
k

c z
b

X z
a

d z

















  (II.14) 

where the kc ’s are the nonzero zeros of ( )X z  and the kd ’s are the nonzero poles of ( )X z . If 

M N  and the poles are all first order, then ( )X z  can be expressed as 

 
1

1

( )
1

N
k

k k

A
X z

d z 





   (II.15) 

Multiplying both sides of (II.15) by  11 kd z  , and evaluating for kz d  shows that the 

coefficient kA , can be found from 

  11 ( )
k

k k
z d

A d z X z


    (II.16) 

Example II-2 

Let 

1 1

1 1
( ) ,

1 1 2
1 1

4 2

X z z
z z 

 
     
  

 

1 2

1 1
( )

1 1
1 1

4 2

A A
X z

z z 
 

 
 

1
1 1

4

1
1 ( ) 1

4 z

A z X z



     
 

 

1
2 1

2

1
1 ( ) 2

2 z

A z X z



    
 

 

1 1

1 2
( )

1 1
1 1

4 2

X z
z z 


 

 
 

Since ( )x n  is right-sided, 
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1 1
( ) ( ) 2 ( )

4 2

1 1
2 ( )

2 4

n n

n n

x n u n u n

u n

        
   

               

 

If M N , a polynomial must be added to the right-hand side of (II.15), the order of which is 
M N . Thus, for M N , the complete partial fraction expansion would have the form 

 
1

0 1

( )
1

M N N
k k

k
k k k

A
X z B z

d z





 

 


    (II.17) 

Exercise II-5 

Determine the inverse z-transform of 
1 2

1 2

1 2
( ) , 1

1 2

z z
X z z

z z

 

 
 

 
 

. Note that ( )X z  has repeated 

poles. 

Exercise II-6 

Use power series expansion to determine the inverse z-transform of 

 2 1 21
( ) 1 1

2
X z z z z     

 
. 

Exercise II-7 

Use long division to determine the inverse z-transform of 
1

1
( )

1
X z

az 


. 

II.2. z-Transform Properties 

[ ] ( ), ROC xx n X z R Z
 

11 1[ ] ( ), ROC xx n X z R Z  

22 2[ ] ( ), ROC xx n X z R Z  

Linearity 

 
1 21 2 1 2[ ] [ ] ( ) ( ), ROC x xax n bx n aX z bX z R R    Z   (II.18) 

Exercise II-8 

Determine the ROC of the z-transform of 0[ ] [ ] [ ]n nx n a u n a u n n   . 
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Time Shifting 

 0
0[ ] ( )nx n n z X z Z   (II.19) 

As in the case of linearity, the ROC can be changed, since the factor 0nz   can alter the number of 
poles at 0z   or z . 

Exercise II-9 

Determine the inverse z-transform of 
1 1

( ) ,
1 4
4

X z z
z

 


. 

Multiplication by an Exponential Sequence 

 [ ] , ROCn
x

z
x n X R 


   
 

Z   (II.20) 

Exercise II-10 

Determine the z-transform of  0[ ] cos [ ]nx n r n u n . 

Differentiation 

 [ ] ( ), ROC x
d

nx n z X z R
dz

 Z   (II.21) 

Exercise II-11 

Determine the inverse z-transform of  1( ) log 1 ,X z az z a   . 

Conjugation 

 [ ] ( ), ROC xx n X z R  Z
  (II.22) 

Time Reversal 

 
1 1

[ ] , ROC
x

x n X
Rz

 


    
 

Z   (II.23) 

 
1 1

[ ] , ROC
x

x n X
z R

    
 

Z   (II.24) 

Convolution 

 
1 21 2 1 2[ ] [ ] ( ) ( ), ROC x xx n x n X z X z R R   Z   (II.25) 
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Exercise II-12 

Use the z-transform and the inverse z-transform to determine the output of an LTI system when 

[ ] [ ]nh n a u n  and [ ] [ ]x n u n . 

Initial-Value Theorem 

If [ ]x n  is zero for 0n   (i.e., if [ ]x n  is causal), then 

 [0] lim ( )
z

x X z


   (II.26) 

 

*** 
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III. DISCRETE FOURIER TRANSFORM 

For finite-duration sequences, it is possible to develop a Fourier representation, referred to as the 
discrete Fourier transform (DFT). The DFT is itself a sequence rather than a function of a 
continuous variable, and it corresponds to samples, equally spaced in frequency, of the Fourier 
transform of the signal. 

In addition to its theoretical importance as a Fourier representation of sequences, the DFT plays a 
central role in the implementation of a variety of digital signal-processing algorithms. This is 
because efficient algorithms exist for the computation of the DFT. 

III.1. Discrete Fourier Series (DFS) 

Consider a sequence [ ]x n  that is periodic with period N . As with continuous-time periodic 
signals, such a sequence can be represented by a Fourier series corresponding to a sum of 
harmonically related complex exponential sequences, i.e., complex exponentials with frequencies 
that are integer multiples of the fundamental frequency 2 N  that is associated with the periodic 
sequence [ ]x n . 

These periodic complex exponentials are of the form 

 

2

[ ]

[ ]

j kn
N

k

k

e n e

e n rN





 
  (III.1) 

where k  is an integer, and the Fourier series representation then has the form 

 
2

1
[ ] [ ]

j kn
N

k

x n X k e
N



     (III.2) 

The Fourier series representation of a continuous-time periodic signal generally requires infinitely 
many harmonically related complex exponentials, whereas the Fourier series for any discrete-time 
signal with period N  requires only N  harmonically related complex exponentials. To see this, 
note that the harmonically related complex exponentials [ ]ke n  are identical for values of k  

separated by integer multiples of N , i.e., 

 [ ] [ ]k lN ke n e n    (III.3) 

Consequently, the set of N  periodic complex exponentials   1
0

[ ]
N

k k
e n


  defines all the distinct 

periodic complex exponentials with frequencies that are integer multiples of 2 N . Thus, the 
Fourier series representation of a periodic sequence [ ]x n  need contain only N  of these complex 
exponentials, and hence, it has the form 

 
21

0

1
[ ] [ ]

N j kn
N

k

x n X k e
N




     (III.4) 
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The Fourier series coefficients ( )X k  are obtained from ( )x n  by the relation 

 
21

0

( ) ( )
N j kn

N

n

X k x n e
 


     (III.5) 

Note that the sequence ( )X k  is periodic with period N , i.e., 

 ( ) ( )X k N X k     (III.6) 

The Fourier series coefficients can be interpreted to be a sequence of finite length, for 
0,1, , 1k N  , and zero otherwise, or as a periodic sequence defined for all k . An advantage 

of interpreting the Fourier series coefficients ( )X k  as a periodic sequence is that there is then a 
duality between the time and frequency domains for the Fourier series representation of periodic 
sequences. 

Let 

 
2

j
N

NW e



   (III.7) 

With this notation, the DFS analysis-synthesis pair is expressed as follows: 

 
1

0

( ) ( )
N

kn
N

n

X k x n W



     (III.8) 

 
1

0

1
( ) ( )

N
kn

N
k

x n X k W
N





     (III.9) 

In both of these equations, ( )X k and ( )x n  are periodic sequences. We will sometimes find it 
convenient to use the notation 

 ( ) ( )x n X k  DFS   (III.10) 

Exercise III-1 

Determine the DFS of 
1, , is any integer

( )
0, otherwise

n rN r
x n


 


 . 

III.2. Properties of The Discrete Fourier Series 

Linearity 

 1 1( ) ( )x n X k  DFS
  (III.11) 

 2 2( ) ( )x n X k  DFS
  (III.12) 
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 1 2 1 2( ) ( ) ( ) ( )ax n bx n aX k bX k     DFS
  (III.13) 

Shifting 

 ( ) ( )km
Nx n m W X k   DFS

  (III.14) 

 ( ) ( )nl
NW x n X k l   DFS

  (III.15) 

Duality 

 ( ) ( )X n Nx k  DFS   (III.16) 

Symmetry Properties 

 ( ) ( )x n X k   DFS   (III.17) 

 ( ) ( )x n X k    DFS   (III.18) 

   1
Re ( ) ( ) ( ) ( )

2ex n X k X k X k     
   DFS   (III.19) 

   1
Im ( ) ( ) ( ) ( )

2oj x n X k X k X k     
   DFS   (III.20) 

  1
( ) ( ) ( ) Re ( )

2ex n x n x n X k     
   DFS   (III.21) 

  1
( ) ( ) ( ) Im ( )

2ox n x n x n j X k     
   DFS   (III.22) 

When ( )x n  is real: 

 ( ) ( )X k X k     (III.23) 

    1
( ) ( ) ( ) Re ( )

2ex n x n x n X k       DFS   (III.24) 

    1
( ) ( ) ( ) Im ( )

2ox n x n x n j X k       DFS   (III.25) 

Periodic Convolution 

If 

 3 1 2( ) ( ) ( )X k X k X k     (III.26) 

then the periodic sequence 3( )x n  with Fourier series coefficients 3( )X k  is 
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1

3 1 2
0

( ) ( ) ( )
N

m

x n x m x n m



      (III.27) 

The sequences in (III.27) are all periodic with period N , and the summation is over only one 
period. A convolution in the form of (III.27) is referred to as a periodic convolution. Just as with 
aperiodic convolution, periodic convolution is commutative; i.e., 

 
1

3 2 1
0

( ) ( ) ( )
N

m

x n x m x n m



      (III.28) 

If 

 3 1 2( ) ( ) ( )x n x n x n     (III.29) 

then, 

 
1

3 1 2
0

1
( ) ( ) ( )

N

l

X k X l X k l
N




      (III.30) 

III.3. Fourier Transform of Periodic Signals 

As discussed earlier, uniform convergence of the Fourier transform of a sequence requires that the 
sequence be absolutely summable, and mean-square convergence requires that the sequence be 
square summable. Periodic sequences satisfy neither condition, because they do not approach zero 
as time approaches  . However, sequences that can be expressed as a sum of complex 
exponentials can be considered to have a Fourier transform representation in the form of a train of 
impulses. Similarly, it is often useful to incorporate the discrete Fourier series representation of 
periodic signals within the framework of the Fourier transform. This can be done by interpreting 
the Fourier transform of a periodic signal to be an impulse train in the frequency domain with the 
impulse values proportional to the DFS coefficients for the sequence. Specifically, if ( )x n  is 

periodic with period N  and the corresponding discrete Fourier series coefficients are ( )X k , then 
the Fourier transform of ( )x n  is defined to be the impulse train 

 
2 2

( ) ( )j

k

k
X e X k

N N
   





   
 

    (III.31) 

Exercise III-2 

Show that ( )jX e   as defined above is periodic with period 2 . 

Exercise III-3 

1. Use the inverse DTFT expression to show that ( )jX e   is a Fourier transform of ( )x n . 

2. Determine the DTFT of ( ) ( )
m

p n n mN



  . 
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Consider a finite-length signal ( )x n  such that ( ) 0x n   except in the interval 0 n N  , and 
consider the convolution of ( )x n  with the periodic impulse train ( )p n : 

 

( ) ( ) ( )

( ) ( )

( )

m

m

x n x n p n

x n n mN

x n mN









 

  

 





 

  (III.32) 

Note that ( )x n  is composed of a set of periodically repeated copies of the finite-length sequence 
( )x n . Therefore, 

 

2

( ) ( ) ( )

2 2
( )

2 2

j j j

j

k

j k
N

k

X e X e P e

X e k
N N

X e k
N N

  





  

  











   
 

          





 

  (III.33) 

Comparing (III.33) with (III.31) yields 

 

2

2

( )

( )

j k
N

j

k
N

X k X e

X e






 
 
 
 




  (III.34) 

In other words, the periodic sequence ( )X k  of DFS coefficients has an interpretation as equally 
spaced samples of the Fourier transform of the finite-length sequence obtained by extracting one 
period of ( )x n ; i.e., 

 
( ), 0

( )
0, otherwise

x n n N
x n

 
 



  (III.35) 

III.4. Sampling the Fourier Transform 

Consider an aperiodic sequence ( )x n  with Fourier transform ( )jX e  , and assume that a sequence 

( )X k  is obtained by sampling ( )jX e   at frequencies 2k k N  , i.e., 

 2( ) ( )j

k
N

X k X e 


  (III.36) 
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We make no assumptions about ( )x n  other than that its Fourier transform exists, i.e., 

 ( ) ( )j j n

n

X e x n e 





   (III.37) 

Therefore, 

 
2

( ) ( )
j kn

N

n

X k x n e
 


    (III.38) 

Since the Fourier transform is periodic in   with period 2 , the resulting sequence is periodic in 
k  with period N . Also, since the Fourier transform is equal to the z-transform evaluated on the 
unit circle, it follows that ( )X k  can also be obtained by sampling ( )X z  at N  equally spaced 
points on the unit circle. Thus, 

 
2

( ) ( ) j k
Nz e

X k X z


  (III.39) 

 Re z

 Im z

2

N



 
Figure III.1 

The above figure makes it clear that the sequence of samples is periodic, since the N  points are 
equally spaced starting with zero angle. Therefore, the same sequence repeats as k  varies outside 
the range 0 k N  . 

Note that the sequence of samples ( )X k , being periodic with period N , could be the sequence of 
discrete Fourier series coefficients of a sequence ( )x n , given by 

 
1

0

1
( ) ( )

N
kn

N
k

x n X k W
N





    (III.40) 

Substituting (III.37) into (III.36) and then substituting the resulting expression for ( )X k  into 
(III.40) gives 
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( ) ( ) ( )

( )

m

r

x n x m p n m

x n rN








 

 





 

  (III.41) 

The periodic sequence ( )x n , corresponding to ( )X k  obtained by sampling ( )jX e  , is formed 
from ( )x n  by adding together an infinite number of shifted replicas of ( )x n . The shifts are all the 

positive and negative integer multiples of N , the period of the sequence ( )X k . 

III.5. The Discrete Fourier Transform 

To each finite-length sequence of length N . we can always associate a periodic sequence 

 ( ) ( )
r

x n x n rN



   (III.42) 

The finite-length sequence ( )x n  can be recovered from ( )x n  through 

 
( ), 0

( )
0, otherwise

x n n N
x n

 
 



  (III.43) 

The DFS coefficients of ( )x n  are samples (spaced in frequency by 2 N ) of the Fourier transform 
of ( )x n . Since ( )x n  is assumed to have finite length N , there is no overlap between the terms 

( )x n rN  for different values of r . Thus, 

 
 
 

( ) mod

( ) N

x n x n N

x n






  (III.44) 

Note that (III.44) is equivalent to (III.42) only when ( )x n  has length less than or equal to N . The 
finite-duration sequence ( )x n  is obtained from ( )x n  by extracting one period, as in (III.43). 

The sequence of discrete Fourier series coefficients ( )X k  of the periodic sequence ( )x n  is itself 
a periodic sequence with period N . To maintain a duality between the time and frequency 
domains, we will choose the Fourier coefficients that we associate with a finite-duration sequence 
to be a finite-duration sequence corresponding to one period of ( )X k . This finite-duration 
sequence ( )X k  will be referred to as the discrete Fourier transform (DFT). Thus, the DFT ( )X k  

is related to the DFS coefficients ( )X k  by 

 
( ), 0

( )
0, otherwise

X k k N
X k

  
 



  (III.45) 

and 
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 
 

( ) mod

( ) N

X k X k N

X k






  (III.46) 

Therefore, 

 

1

0

( ) , 0
( )

0, otherwise

N
kn
N

n

x n W k N
X k






  





  (III.47) 

 

1

0

( ) , 0
( )

0, otherwise

N
kn

N
k

X k W n N
x n







  





  (III.48) 

The relationship between ( )x n  and ( )X k  will sometimes be denoted as 

 ( ) ( )x n X kDFT   (III.49) 

Exercise III-4 

1. Determine the DFT of a rectangular pulse with duration N . 

2. Determine the DFT of 

1, 0
2( )

0,
2

N
n

x n
N

n N

   
  


. 

III.6. Properties of the DFT 

Linearity 

If 

 1 1

2 2

( ) ( )

( ) ( )

x n X k

x n X k





DFT

DFT
  (III.50) 

then 

 3 1 1 2 2 1 1 2 2 3( ) ( ) ( ) ( ) ( ) ( )x n a x n a x n a X k a X k X k    DFT
  (III.51) 

Clearly, if 1( )x n  has length 1N  and 2( )x n  has length 2N , then the maximum length of 3( )x n  

will be  3 1 2max ,N N N . Thus, in order for (III.51) to be meaningful, both DFTs must be 

computed with the same length 3N N . If, for example, 1 2N N , then 1( )X k  is the DFT of the 

sequence 1( )x n  augmented by 2 1N N  zeros. That is, the 2N -point DFT of 1( )x n  is 



Mohammad M. Banat – EE 768: Digital Signal Processing for Communications 55 

III: Discrete Fourier Transform 

 III.6-Properties of the DFT 

 

 

 
1

2

1

1 1 2
0

( ) ( ) , 0
N

kn
N

n

X k x n W k N



     (III.52) 

and the 2N -point DFT of 2( )x n  is 

 
2

2

1

2 2 2
0

( ) ( ) , 0
N

kn
N

n

X k x n W k N



     (III.53) 

Circular Shift of a Sequence 

If 

 
 

1
( ) , 0

( )
0, otherwise

Nx n m n N
x n

   
 


  (III.54) 

then 

 
2

1( ) ( )
j km

NX k e X k



   (III.55) 

Duality 

  ( ) ( ) , 0NX n X k k N   DFT   (III.56) 

Symmetry Properties 

  ( ) ( ) , 0Nx n X k k N    DFT   (III.57) 

  ( ) ( ), 0Nx n X k k N    DFT   (III.58) 

The even and odd parts of ( )x n  are given by 

     1
( ) ( ) ( ) , 0

2ep N Nx n x n x n n N       (III.59) 

     1
( ) ( ) ( ) , 0

2op N Nx n x n x n n N       (III.60) 

Note that for 0 n N  , 

 
( )

( )
N

N

n n

n N n



  
  (III.61) 

Therefore, 

  1
( ) ( ) ( ) , 0

2epx n x n x N n n N       (III.62) 
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  1
( ) ( ) ( ) , 0

2opx n x n x N n n N       (III.63) 

  (0) Re (0)epx x   (III.64) 

  (0) Im (0)opx j x   (III.65) 

Exercise III-5 

Show that for 0 n N  , 

( ) ( ) ( )

( ) ( ) ( )

ep e e

op o o

x n x n x n N

x n x n x n N

  

  
 

The sequences ( )epx n  and ( )opx n  will be referred to as the periodic conjugate-symmetric and 

periodic conjugate-antisymmetric components, respectively, of ( )x n . When ( )epx n  and ( )opx n  

are real, they will be referred to as the periodic even and periodic odd components, respectively. 

Exercise III-6 

Show that ( )epx n  and ( )opx n  are not periodic sequences. Show that, instead, they are finite-length 

sequences that are equal to one period of the periodic sequences ( )ex n  and ( )ox n , respectively. 

Note that 

 ( ) ( ) ( )ep opx n x n x n    (III.66) 

The symmetry properties of the DFT now follow in a straightforward way: 

  Re ( ) ( )epx n X kDFT   (III.67) 

  Im ( ) ( )opj x n X kDFT   (III.68) 

  ( ) Re ( )epx n X kDFT   (III.69) 

  ( ) Im ( )opx n j X kDFT   (III.70) 

Circular Convolution 

Consider two finite-duration sequences 1( )x n  and 2( )x n , both of length N , with DFTs 1( )X k  

and 2( )X k , respectively. Let the sequence 3( )x n  have the DFT 3 1 2( ) ( ) ( )X k X k X k . Note that 

3( )X k  is the first period of 3 1 2( ) ( ) ( )X k X k X k   . According to (III.27),  



Mohammad M. Banat – EE 768: Digital Signal Processing for Communications 57 

III: Discrete Fourier Transform 

 III.6-Properties of the DFT 

 

 

 
1

3 1 2
0

( ) ( ) ( )
N

m

x n x m x n m



      (III.71) 

The sequence 3( )x n  corresponds to one period of 3( )x n , and is given by 

 
1

3 1 2
0

( ) ( ) ( ), 0
N

m

x n x m x n m n N



        (III.72) 

Equivalently, 

    
1

3 1 2
0

( ) ( ) ( ) , 0
N

N N
m

x n x m x n m n N



      (III.73) 

Since ( ) Nm m  for 0 m N  , (III.73) can be written as 

  
1

3 1 2
0

( ) ( ) ( ) , 0
N

N
m

x n x m x n m n N



      (III.74) 

This is known as circular convolution, and is usually denoted as 

 
3 1 ( ) 2

2 ( ) 1

( ) ( ) ( )

( ) ( )

N

N

x n x n x n

x n x n

 

 
  (III.75) 

Exercise III-7 

Let 1( )x n  and 2( )x n  be two unit rectangular sequences of duration L . Determine 

3 1 ( ) 2( ) ( ) ( )Nx n x n x n   when 

1. N L  
2. 2N L  

In view of the duality of the DFT relations, it is not surprising that the DFT of a product of two N  
point sequences is the circular convolution of their respective discrete Fourier transforms. 
Specifically, if 3 1 2( ) ( ) ( )x n x n x n , then 

  
1

3 1 2
0

1
( ) ( ) ( )

N

N
l

X k X l X k l
N




    (III.76) 

or 

 1 2 1 ( ) 2
1

( ) ( ) ( ) ( )Nx n x n X k X k
N

 DFT   (III.77) 
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Assignment III.1 

Linear Convolution Using the Discrete Fourier Transform. 

 

*** 
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IV. LINEAR OPTIMUM FILTERING 

IV.1. Introduction 

Consider the following block diagram 

[ ]u n [ ]y n


[ ]d n

[ ]e n

nw

 
Figure IV.1 

This discrete-time filter output is used to provide an estimate of some desired response. The filter 
input and the desired response represent single realizations of respective stochastic processes. The 
estimation is accompanied by an error with statistical characteristics of its own. In particular, the 
estimation error, denoted by [ ]e n , is defined as the difference between the desired response  [ ]d n  
and the filter output [ ]y n . 

The requirement is to make the estimation error [ ]e n  “as small as possible” in some statistical 
sense. Two restrictions are placed on the filter: 

 The filter is linear, which makes the mathematical analysis easy to handle. 
 The filter operates in discrete time, which makes it possible for the filter to be implemented 

using digital hardware/software. 

The final details of the filter specifications, however, depend on two other choices that have to be 
made: 

 Whether the impulse response of the filter has finite or infinite duration. 
 The type of statistical criterion used for the optimization. 

The choice of a finite-duration impulse response (FIR) or an infinite-duration impulse response 
(IIR) for the filter is dictated by practical considerations. The choice of a statistical criterion for 
optimizing the filter design is influenced by mathematical tractability. 

We will confine our attention to the use of FIR filters. An FIR filter is inherently stable, because 
its structure involves the use of forward paths only. Indeed, it is this form of signal transmission 
through the filter that limits its impulse response to a finite duration. 

On the other hand, an IIR filter involves both feedforward and feedback paths. The presence of 
feedback means that portions of the filter output and possibly other internal variables in the filter 
are fed back to the input. Consequently, unless it is properly designed, feedback in the filter can 
indeed make it unstable. This kind of operation is clearly unacceptable when the requirement is 
that of filtering for which stability is a “must”. 

By itself, the stability problem in IIR filters is manageable in both theoretical and practical terms. 
However, when the filter is required to be adaptive, bringing with it stability problems of its own, 
the inclusion of adaptivity combined with feedback that is inherently present in an IlR filter creates 
a problem that is much more difficult to handle. It is for this reason that we find that in the majority 
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of applications requiring the use of adaptivity, the use of an FIR filter is preferred over an IIR filler 
even though the latter is less demanding in computational requirements. 

Turning next to the issue of what criterion to choose for statistical optimization, there are indeed 
several criteria that suggest themselves. Specifically, we may consider optimizing the filter design 
by minimizing a cost function, or index of performance, selected from the following short list of 
possibilities: 

 Mean-square value of the estimation error 
 Expectation of the absolute value of the estimation error 
 Expectation of third or higher powers of the absolute value of the estimation error 

The first option has a clear advantage over the other two, because it leads to tractable mathematics. 
In particular, the choice of the mean-square error criterion results in a second-order dependence 
for the cost function on the unknown coefficients in the impulse response of the filter. Moreover, 
the cost function has a distinct minimum that uniquely defines the optimum statistical design of 
the filter. 

We may now summarize the essence of the filtering problem by making the following statement: 

Design a linear discrete-time filter, with an impulse response nw , that uses an input sequence [ ]u n  

to produce an output sequence [ ]y n  that is meant as an estimate of a desired response [ ]d n , such 
that the mean-square value of the estimation error [ ]e n , defined as the difference between the 
desired response [ ]d n  and the actual response [ ]y n , is minimized. 

We may develop the mathematical solution to this statistical optimization problem by following 
two entirely different approaches that are complementary. One approach leads to the development 
of an important theorem commonly known as the principle of orthogonality. The other approach 
highlights the error performance surface that describes the second-order dependence of the cost 
function on the filter coefficients. We will proceed by deriving the principle of orthogonality first, 
because the derivation is relatively simple and because the principle of orthogonality is highly 
insightful. 

IV.2. Principle of Orthogonality 

Consider a discrete-time linear time-invariant filter whose input is denoted by [ ]u n . Let nw  be 

the filter impulse response sequence. Let both [ ]u n  and nw  have complex values and infinite 

duration. The filter output is defined by the linear convolution sum: 

 
0

[ ] [ ]k
k

y n w u n k





    (IV.1) 

Note that in complex terminology, the term [ ]kw u n k   represents the scalar version of an inner 

product of the filter coefficient kw  and the filter input [ ]u n k . The purpose of the filter is to 

produce an estimate of the desired response [ ]d n . We assume that the filter input and the desired 
response are single realizations of jointly wide-sense stationary stochastic processes, both with 
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zero mean. Accordingly, the estimation of [ ]d n  is accompanied by an error defined by the 
difference 

 [ ] [ ] [ ]e n d n y n    (IV.2) 

The estimation error [ ]e n  is the sample value of a random variable. To optimize the filter design, 
we choose to minimize the mean-square value of the estimation error [ ]e n . We may thus define 
the cost function as the mean-squared error 

 
2

E [ ] [ ]

E [ ]

J e n e n

e n

   
 
 

  (IV.3) 

The problem is therefore to determine the operating conditions for which J  attains its minimum 
value. For complex input data, the filter coefficients are in general complex, too. Let the k th filter 
coefficient kw  be denoted in terms of its real and imaginary parts as follows: 

 k k kw a jb    (IV.4) 

Let us define the vector gradient operator  , the k th element of which is 

 k
k k

j
a b

 
  

 
  (IV.5) 

Applying the operator k  to the cost function J  gives 

 k
k k

J J
J j

a b

 
  

 
  (IV.6) 

Note that for the definition of the complex gradient given in (IV.6) to be valid, it is essential that 
J  be real. For the cost function J  to attain its minimum value, all elements of the gradient vector 

J  must be simultaneously equal to zero, as shown by 

 0, 0,1,k J k     (IV.7) 

Under this set of conditions, the filter is said to be optimum in the mean-squared-error sense. 
According to (IV.3), the cost function is a scalar that is independent of time n . Hence, substituting 
the first line of (IV.3) in (IV.6), and using (IV.2) and (IV.4), we get the following partial 
derivatives: 
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[ ]
[ ]

[ ]
[ ]
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k

k
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k

e n
u n k

a

e n
ju n k

b

e n
u n k

a

e n
ju n k

b








  




 




  




  



  (IV.8) 

Thus, substituting these partial derivatives in (IV.7) and then canceling common terms we finally 
get the result 

 2E [ ] [ ]k J u n k e n        (IV.9) 

Let [ ]oe n  denote the special value of the estimation error that results when the filter operates in 

its optimum condition. In other words, 

 E [ ] [ ] 0, 0,1,ou n k e n k       (IV.10) 

The last result can be stated as follows: The necessary and sufficient condition for the cost function 
J  to attain its minimum value is that the corresponding value of the estimation error [ ]oe n  is 

orthogonal to each input sample that enters into the estimation of the desired response at time n . 
Indeed, this statement constitutes the principle of orthogonality; it represents one of the most 
elegant theorems in the subject of linear optimum filtering. It also provides the mathematical basis 
of a procedure for testing that the linear filter is operating in its optimum condition. 

Consider the following linear system, in which x  is an 1n  vector and b  is an 1m  vector 

 Ax b   (IV.11) 

where the m n  matrix A  can be written in terms of its 1m  column vectors in the form 

  1 2 nA a a a    (IV.12) 

It is well-known that if b  is not in the column space of A  then there is no solution to the system 

in (IV.11). Since the column space is composed of all linear combinations of   1
n

i i
a 

, then b  can 

be replaced by its projection onto the column space, and in that case there will be a solution. 
Projection is illustrated by the simple example in Figure IV.2. 
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Figure IV.2: Projection and orthogonality 

Corollary to the Principle of Orthogonality 

Note that 

 0

0

E [ ] [ ] E [ ] [ ]

E [ ] [ ]

k
k

k
k

y n e n w u n k e n

w u n k e n


  




 



 
        

   




  (IV.13) 

Let [ ]oy n  denote the output produced by the filter optimized in the mean-squared-error sense, 

with [ ]oe n  denoting the corresponding estimation error. Using the principle of orthogonality, we 

get the desired result 

 E [ ] [ ] 0o oy n e n      (IV.14) 

We may thus state the corollary to the principle of orthogonality as follows: When the filter 
operates in its optimum condition, the estimate of the desired response defined by the filter output 

[ ]oy n  and the corresponding estimation error [ ]oe n  are orthogonal to each other. 

IV.3. Minimum Mean-Squared Error 

When the linear discrete-time filter operates in its optimum condition, (IV.2) takes on the 
following special form 

 [ ] [ ] [ ]o oe n d n y n    (IV.15) 

Rearranging terms we get 

 [ ] [ ] [ ]o od n y n e n    (IV.16) 

Let minJ  denote the minimum mean-squared error, defined by 
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 2
min E [ ]oJ e n    

  (IV.17) 

Hence, evaluating the mean-square values of both sides of (IV.16), and applying to it the corollary 
to the principle of orthogonality described by (IV.14), we get 

 2 2
ˆ mind d

J     (IV.18) 

Solving (IV.18) for the minimum mean-squared error, we get 

 2 2
ˆmin d d

J      (IV.19) 

This relation shows that for the optimum filter, the minimum mean-squared error equals the 
difference between the variance of the desired response and the variance of the estimate that the 
filter produces at its output. 

It is convenient to normalize the expression in (IV.19) in such a way that the minimum value of 
the mean-squared error always lies between zero and one. We may do this by dividing both sides 

of (IV.19) by 2
d , obtaining 

 
2
ˆmin

2 2
1 d

d d

J 

 
    (IV.20) 

Let 

 min
2
d

J


   (IV.21) 

The quantity   is called the normalized mean-squared error, in terms of which we may rewrite 
(IV.20) in the form 

 
2
ˆ

2
1 d

d





    (IV.22) 

Exercise IV-1 

Show that 0 1  . 

IV.4. Wiener-Hopf Equations 

The principle of orthogonality specifies the necessary and sufficient condition for the optimum 
operation of the filter. We may reformulate the necessary and sufficient condition for optimality 
by substituting (IV.1) and (IV.2) in the orthogonality principle equation (IV.10). In particular, we 
may write 

 
0

E [ ] [ ] [ ] 0oi
i

u n k d n w u n i


 



  
         

   (IV.23) 
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where oiw  is the i th coefficient in the impulse response of the optimum filter. Expanding this 

equation and rearranging terms, we get 

 
0

E [ ] [ ] E [ ] [ ]oi
i

w u n k u n i u n k d n


 



            (IV.24) 

The two expectations in (IV.24) may be interpreted as follows: 

 The expectation E [ ] [ ]u n k u n i     is equal to the autocorrelation function of the filter 

input for a lag of i k . We may thus express this expectation as 

 [ ] E [ ] [ ]r i k u n k u n i        (IV.25) 

 The expectation E [ ] [ ]u n k d n    is equal to the cross-correlation between the filter input 

[ ]u n k  and the desired response [ ]d n  for a lag of k . We may thus express this second 
expectation as 

 [ ] E [ ] [ ]p k u n k d n       (IV.26) 

Accordingly, 

 
0

[ ] [ ]oi
i

w r i k p k



     (IV.27) 

The system of equations (IV.27) defines the optimum filter coefficients, in the most general setting, 
in terms of two correlation functions: the autocorrelation function of the filter input, and the cross-
correlation between the filter input and the desired response. These equations are called the 
Wiener-Hopf equations. 

It should also be noted that the defining equation for a linear optimum filter was formulated 
originally by Wiener and Hopf (1931) for the case of a continuous-time filter, whereas, of course 
the system of (IV.27) is formulated for a discrete-time filter. 

IV.5. Solution of the Wiener-Hopf Equations for Linear Transversal Filters 

The solution of the set of Wiener-Hopf equations is greatly simplified for the special case when a 
linear transversal filter, or FIR filter, is used to perform the estimation of desired response ( )d n . 

The impulse response of the transversal filter is defined by the finite set of tap weights 

0 1 1, , , Mw w w  . Accordingly, the Wiener-Hopf equations reduce to a system of M  simultaneous 

equations, as shown by 

 
1

0

( ) ( ), 0,1, , 1
M

oi
i

w r i k p k k M



        (IV.28) 
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
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2Mw 

 
Figure IV.3 

Let R  denote the M M  correlation matrix of the tap inputs ( ), ( 1), , ( 1)u n u n u n M    in the 
transversal filter, i.e., 

 E ( ) ( )HR u n u n      (IV.29) 

where ( )u n  is the 1M   tap-input vector, defined as 

  ( ) ( ) ( 1) ( 1)
T

u n u n u n u n M      (IV.30) 

Exercise IV-2 

Explain why the correlation matrix is not necessarily a rank-one matrix. 

In expanded form, we have 
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(0) (1) ( 1)

( 1) (0) ( 2)

( 1) ( 2) (0)

r r r M

r r r M
R

r M r M r

 
   
 
     




   


  (IV.31) 

Correspondingly, let p  denote the 1M   cross-correlation vector between the tap inputs of the 

filter and the desired response ( )d n : 

  (0) ( 1) (1 )
T

p p p p M     (IV.32) 

Note that the lags used in the definition of p  are either zero or else negative. We may thus rewrite 

the Wiener-Hopf equations in the compact matrix form: 

 oRw p   (IV.33) 

where 

 ,0 ,1 , 1
T

o o o o Mw w w w       (IV.34) 

To solve the Wiener-Hopf equations for ow  we assume that the correlation matrix R  is 

nonsingular, yielding 

 1
ow R p   (IV.35) 

The computation of the optimum tap-weight vector ow  requires knowledge of two quantities: (1) 

the correlation matrix R  of the tap-input vector ( )u n  and (2) the cross-correlation vector p  

between the tap-input vector ( )u n  and the desired response ( )d n . 

IV.6. Properties of the Correlation Matrix 

The correlation matrix of a stationary discrete-time stochastic process has the following properties: 

 The correlation matrix of a stationary discrete-time stochastic process is Hermitian. 

 HR R   (IV.36) 

Another way of stating the Hermitian property is 

 ( ) ( )r k r k    (IV.37) 

Therefore, the correlation matrix can be rewritten in the form 
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(0) (1) ( 1)

(1) (0) ( 2)

( 1) ( 2) (0)

r r r M

r r r M
R

r M r M r



 

 
 

   
 
   




   



  (IV.38) 

For the special case of real-valued data, the autocorrelation function ( )r k  is real for all k , and the 
correlation matrix is symmetric. 

 The correlation matrix of a stationary discrete· time stochastic process is Toeplitz. 

We say that a square matrix is Toeplitz if all the elements on its main diagonal are equal, and if 
the elements on any other diagonal parallel to the main diagonal are also equal. It is important to 
recognize, however, that the Toeplitz property of the correlation matrix is a direct consequence of 
the assumption that the discrete-time stochastic process represented by the observation vector 

( )u n  is wide-sense stationary. 

Indeed, we may state that if the discrete-time stochastic process is wide-sense stationary, then its 
correlation matrix must be Toeplitz; and, conversely, if the correlation matrix is Toeplitz, then the 
discrete-time stochastic process must be wide-sense stationary. 

 The correlation matrix of a discrete-time stochastic process is always nonnegative definite 
and almost always positive definite. 

Let x  be an arbitrary (nonzero) 1M   complex-valued vector. Define the scalar random variable  

y  as the inner product of x  and the observation vector ( )u n , as shown by 

 ( )Hy x u n   (IV.39) 

Taking the Hermitian transpose of both sides and recognizing that y  is a scalar, we get 

 ( )Hy u n x    (IV.40) 

The mean-square value of the random variable y  equals 

 

2
E E

E ( ) ( )

E ( ) ( )

H H

H H

H

y yy

x u n u n x

x u n u n x

x Rx

      
   

   


  (IV.41) 

The expression Hx Rx  is called a Hermitian form. Since 

 
2

E 0y      (IV.42) 

it follows that 
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 0Hx Rx    (IV.43) 

A Hermitian form that satisfies this condition for every nonzero x  is said to be nonnegative 
definite or positive semidefinite. Accordingly, we may state that the correlation matrix of a wide-
sense stationary process is always nonnegative definite. 

If the Hermitian form Hx Rx  satisfies the condition 

 0Hx Rx    (IV.44) 

for every nonzero x , we say that the correlation matrix R  is positive definite. This condition is 
satisfied for a wide-sense stationary process unless there are linear dependencies between the 
random variables that constitute the M  elements of the observation vector. Such a situation arises 
essentially only when the process ( )u n  consists of the sum of K  sinusoids with K M . In 
practice, we find that this idealized situation is so rare in occurrence that the correlation matrix is 
almost always positive definite. 

The positive definiteness of a correlation matrix implies that its determinant is greater than zero. 
This implies that the correlation matrix is nonsingular. We say that a matrix is nonsingular if its 
inverse exists; otherwise, it is singular. Accordingly, we may state that a correlation matrix is 
almost always nonsingular. 

 When the elements that constitute the observation vector of a stationary discrete-time 
stochastic process are rearranged backward, the effect is equivalent to the transposition of 
the correlation matrix of the process. 

Let ( )Bu n  denote the 1M   vector obtained by rearranging the elements that constitute the 
observation vector ( )u n  backward. We illustrate this operation by writing 

  ( ) ( 1) ( 2) ( )
TBu n u n M u n M u n        (IV.45) 

Then 

 
E ( ) ( )B B BH

T

R u n u n

R

   


  (IV.46) 

 The correlation matrices MR  and 1MR   of a stationary discrete-time stochastic process, 

pertaining to M  and 1M   observations of the process, respectively are related by 

 

1

(0)

(0)

H

M

M

B
M
BT

r r
R

r R

R r

r r





 
  
 
 

  
 

  (IV.47) 
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IV.7. Eigenanalysis of the Correlation Matrix 

Let the Hermitian matrix R  denote the M M  correlation matrix of a wide-sense stationary 
discrete-time stochastic process represented by the 1M   observation vector ( )u n . In general, 
this matrix may contain complex elements. We wish to find an 1M   vector q  that satisfies the 

condition for some constant  : 

 Rq q   (IV.48) 

This condition states that the vector q  is linearly transformed to the vector q  by the Hermitian 

matrix R . Since   is a constant, the vector q  therefore has special significance in that it is left 

invariant in direction (in the M -dimensional space) by a linear transformation. For a typical 
M M  matrix there will be M  such vectors. To show this, we first rewrite (IV.48) in the form 

 ( ) 0R I q    (IV.49) 

Equation (IV.49) will have a solution only when the matrix R I  is singular. This happens when 

 det( ) 0R I    (IV.50) 

This determinant can be expanded in the form of a polynomial in   of degree M . We thus find 
that, in general, (IV.50) has M  distinct roots. Correspondingly, (IV.50) has M  solutions in the 
form of vector q . 

Equation (IV.50) is called the characteristic equation of the matrix R . Let 1 2, , , M    denote 

the M  roots of this equation. These roots are called the eigenvalues of the matrix R . Although R  
has M eigenvalues, they need not be distinct. When the characteristic equation has multiple roots, 
the matrix R  is said to have degenerate eigenvalues. 

Let i  denote the i th eigenvalue of the matrix R . Also. let iq  be a nonzero vector such that 

 i i iRq q  (IV.51) 

The vector iq  is called the eigenvector associated with i . An eigenvector can correspond to only 

one eigenvalue. However, an eigenvalue may have many eigenvectors. For example, if iq  is an 

eigenvector associated with eigenvalue i , then so is iaq  for any scalar 0a . 

IV.8. Properties of Eigenvalues and Eigenvectors 

 If 1 2, , , M    denote the eigenvalues of the correlation matrix R , then the eigenvalues 

of the matrix kR  equal 1 2, , ,k k k
M    for any integer 0k  . 

 Let 1 2, , , Mq q q  be the eigenvectors corresponding to the distinct eigenvalues 

1 2, , , M    of the M M  correlation matrix R , respectively. Then the eigenvectors 

1 2, , , Mq q q  are linearly independent. 
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Vandermonde Matrix 

A matrix in the following form is called a Vandermonde matrix: 

 

2 1
1 1 1

2 1
2 2 2

2 1
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1

1
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M M M

S

  

  
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 
 
 

  
 
 
 




    



 (IV.52) 

When 1 2, , , M    are distinct, the Vandermonde matrix S is nonsingular. 

 Let 1 2, , , M    be the eigenvalues of the M M  correlation matrix R . Then all these 

eigenvalues are real and nonnegative. 
 Let 1 2, , , Mq q q  be the eigenvectors corresponding to the distinct eigenvalues 

1 2, , , M    of the M M  correlation matrix R , respectively. Then the eigenvectors 

1 2, , , Mq q q  are orthogonal to each other: 

 0,H
i jq q i j    (IV.53) 

 Let 1 2, , , Mq q q  be the eigenvectors corresponding to the distinct eigenvalues 

1 2, , , M    of the M M  correlation matrix R , respectively. Define the M M  matrix 

 1 2 MQ q q q     (IV.54) 

where  
1

M
i i

q


 constitutes a set of orthonormal vectors. i.e., 

 
1,

0,
H
i j

i j
q q

i j


  

 (IV.55) 

Matrix Q  is called a unitary matrix (orthogonal matrix for real entries). Matrix Q  has the property 

 1 HQ Q   (IV.56) 

Matrix Q  is nonsingular. 

Define 

 

1

2

M






 
 
  
 
 
 

  (IV.57) 
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Then, 

 HQ RQ   (IV.58) 

Using (IV.56) in (IV.58), 

 RQ Q   (IV.59) 

We have proved that the correlation matrix R  may be diagonalized by a unitary similarity 
transformation. 

By postmultiplying both sides of (IV.59) by 1Q   and then using (IV.56), we may also write 

 

1

H

M
H

i i i
i

R Q Q

q q


 


 (IV.60) 

Let the projection iP  denote the outer product H
i iq q . Then, it is a straightforward matter to show 

that 

 
2

i i

H
i

P P

P




 (IV.61) 

Note that iP  is a rank-one matrix. The above shows that the correlation matrix of a wide-sense 

stationary process equals the linear combination of rank-one projections, with each projection 
being weighted by the respective eigenvalue. This result is known as Mercer’s theorem. It is also 
referred to as the spectral theorem. 

 Let 1 2, , , M    be the eigenvalues of the M M  correlation matrix R . Then the sum 

of these eigenvalues equals the trace of matrix R . The trace of a square matrix is defined 
as the sum of the diagonal elements of the matrix. 

 The correlation matrix R  is ill conditioned if the ratio of the largest eigenvalue to the 
smallest eigenvalue of R  is large. When R is ill-conditioned, the solution of oRw p  is 

very sensitive to changes in p . 

 The eigenvalues of the correlation matrix of a discrete-time stochastic process are bounded 
by the minimum and maximum values of the power spectral density of the process. 

Let   1
M

i i
 

 and  
1

M
i i

q


 denote the eigenvalues of the M M  correlation matrix R  of a discrete-

time stochastic process ( )u n  and their associated eigenvectors, respectively. Note that 

 H H
i i i i iq Rq q q  (IV.62) 
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Since 0H
i iq q  , we can determine i  as 

 
H
i i

i H
i i

q Rq

q q
   (IV.63) 

The Hermitian form in the numerator may be expressed in its expanded form as follows 

 
1 1

( )
M M

H
i i ik il

k l

q Rq q r l k q

 
   (IV.64) 

Expressing the autocorrelation function as the inverse Fourier transform of the power spectral 
density yields 

 ( )1
( ) ( )

2
j j l k

ur l k S e e d


 










    (IV.65) 

Substituting (IV.65) into (IV.64), 

 

( )

1 1

1 1

1
( )

2

1
( )

2

M M
H j j l k
i i ik il u

k l

M M
j j k j l

u ik il
k l

q Rq q q S e e d

S e q e q e d


 




  









 

  

 

 




    
  





 

 
 (IV.66) 

Let’s denote the DTFT of   1
M

il l
q 

 as 

 
1

( )
M

j j l
i il

l

Q e q e 


  (IV.67) 

Then, 

 
21

( ) ( )
2

H j j
i i u iq Rq S e Q e d


 








 


 (IV.68) 

Similarly, it can be shown that 

 
21

( )
2

H j
i i iq q Q e d











 


 (IV.69) 

Accordingly, 
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2

2

( ) ( )

( )

j j
u i

i

j
i

S e Q e d

Q e d


 


























 (IV.70) 

Let minS  and maxS  denote the absolute minimum and maximum values of the power spectral 

density ( )j
uS e  , respectively. Then it follows that 

 
2 2

min( ) ( ) ( )j j j
u i iS e Q e d S Q e d

 
  

 

 
 

  
 

 (IV.71) 

and 

 
2 2

max( ) ( ) ( )j j j
u i iS e Q e d S Q e d

 
  

 

 
 

  
 

 (IV.72) 

Equations (IV.71) and (IV.72) can be rewritten as follows: 

 mini S   (IV.73) 

and 

 maxi S   (IV.74) 

Combining (IV.73) and (IV.74) we get 

 min maxiS S   (IV.75) 

Correspondingly, the eigenvalue spread ( )RX  is bounded as 

 

max

min

max

min

( )R

S

S








X
 (IV.76) 

IV.8.A. KARHUNEN-LOÉVE EXPANSION: 

 
1

( ) ( )
M

i i
i

u n c n q


  (IV.77) 
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The coefficients of the expansion are zero-mean, uncorrelated random variables defined by the 
inner product 

 ( ) ( )H
i ic n q u n  (IV.78) 

The coefficients of the expansion are random variables characterized as follows: 

  E ( ) 0ic n   (IV.79) 

and 

 
,

E ( ) ( )
0,

i
i j

i j
c n c n

i j

      
 (IV.80) 

For a physical interpretation of the Karhunen- Loéve expansion, we may view the eigenvectors as 
the coordinates of an M -dimensional space, and thus represent the random vector ( )u n  by the set 

of its projections   1
( )

M
i i

c n 
 onto these axes, respectively. 

Moreover, we deduce from (IV.77) that 

 

2

1

2

( ) ( ) ( )

( )

M
H

i
i

c n u n u n

u n







 (IV.81) 

That is to say, the coefficient ( )ic n  has an energy equal to that of the observation vector ( )u n  

measured along the thi  coordinate. Naturally, this energy is a random variable whose mean value 

equals the thi   eigenvalue, as shown by 

 2
E ( )i ic n     

 (IV.82) 

IV.9. Error Performance Surface 

The Wiener-Hopf equations are traceable to the principle of orthogonality. We may also derive the 
Wiener-Hopf equations by examining the dependence of the cost function J  on the tap weights 
of the transversal filter. First, we write the estimation error ( )e n  as follows: 

 
1

0

( ) ( ) ( )
M

k
k

e n d n w u n k





     (IV.83) 

Accordingly, we may define the cost function for the transversal filter structure as 

 E ( ) ( )J e n e n      (IV.84) 

Therefore, 
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1 1
2

0 0

1 1

0 0

E ( ) E ( ) ( ) E ( ) ( )

E ( ) ( )

M M

k k
k k

M M

k i
k i

J d n w u n k d n w u n k d n

w w u n k u n i

 
  

 
 

 

 

             

    

 

 
  (IV.85) 

Note that 

 2 2E ( ) dd n   
 

  (IV.86) 

where 2
d  is the variance of the desired response, assumed to be of zero mean. 

 E ( ) ( ) ( )u n k d n p k       (IV.87) 

 E ( ) ( ) ( )u n k d n p k        (IV.88) 

 E ( ) ( ) ( )u n k u n i r i k        (IV.89) 

Using the last few equations in (IV.85) yields 

 
1 1 1 1

2

0 0 0 0

( ) ( ) ( )
M M M M

d k k k i
k k k i

J w p k w p k w w r i k
   

   

   
            (IV.90) 

Equation (IV.90) states that for the case when the tap inputs of the transversal filter and the desired 
response are jointly stationary, the cost function, or mean-squared error, J  is precisely a second-
order function of the tap weights in the filter. Consequently, we may visualize the dependence of 
the cost function on the tap weights as a bowl-shaped 1M  -dimensional surface with M  degrees 
of freedom represented by the tap weights of the filter. This surface is characterized by a unique 
minimum. We refer to the surface so described as the error-performance surface of the transversal 
filter. 

At the bottom or minimum point of the error-performance surface, the cost function attains its 
minimum value denoted by minJ . At this point, the gradient vector J  is identically zero. In other 

words, 

 0, 0,1, , 1k J k M      (IV.91) 

Let 

 k k kw a jb    (IV.92) 

Applying (IV.91) to (IV.90), and replacing iw  by ,o iw  we get 
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1

,
0

2 ( ) 2 ( )

0

k
k k

M

o i
i

J J
J j

a b

p k w r i k




 
  

 

    



   (IV.93) 

This simplifies to 

 
1

,
0

( ) ( ), 0,1, , 1
M

o i
i

w r i k p k k M



        (IV.94) 

This system of equations is identical to the Wiener-Hopf equations derived earlier. 

IV.10. Minimum Mean-Squared Error 

Let  ˆ
nd nU  denote the estimate of the desired response ( )d n , produced at the output of the 

transversal filter, that is optimized in the mean-squared-error sense, given the tap inputs 
( ), ( 1), , ( 1)u n u n u n M    that span the space nU . Then, 

 
 

1

,
0

ˆ ( )

( )

M

n o k
k

H
o

d n w u n k

w u n





 



U
  (IV.95) 

Note that ( )H
ow u n  denotes an inner product of the optimum tap-weight vector ow  and the tap-

input vector ( )u n . We assume that ( )u n  has zero mean, making the estimate  ˆ
nd nU  have zero 

mean too. Hence, 

 

2
ˆ E ( ) ( )

E ( ) ( )

H H
o od

H H
o o

H
o o

w u n u n w

w u n u n w

w Rw

    
   



  (IV.96) 

where R  is the correlation matrix of the tap-weight vector ( )u n . Note that we can write 

 
2
ˆ

H
od

H
o

w p

p w

 


  (IV.97) 

Now, since 

 2 2
ˆmin d d

J      (IV.98) 

We get 
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2

min

2 1

H
d o

H
d

J p w

p R p



 

 

 
  (IV.99) 

IV.11. Canonical Form of the Error Performance Surface 

Equation (IV.85) defines the expanded form of the mean-squared error produced by the transversal 
filter. We may rewrite this equation in matrix form, by using the definitions for the correlation 
matrix R  and the cross-correlation vector p : 

 2( ) H H H
dJ w w p p w w Rw      (IV.100) 

The correlation matrix R  is almost always positive definite, so that the inverse matrix 1R  exists. 
Accordingly, expressing ( )J w  as a “perfect square” in w , we may rewrite (IV.100) in the form 

    2 1 1 1( )
HH

dJ w p R p w R p R w R p          (IV.101) 

We now immediately see that 

 2 1min ( ) H
d

w
J w p R p     (IV.102) 

This happens when 

 1
ow R p   (IV.103) 

Note that we can write 

 min( ) ( ) ( )H
o oJ w J w w R w w      (IV.104) 

This equation shows explicitly the unique optimality of the minimizing tap-weight vector ow . 

Although the quadratic form on the right-hand side of (IV.104) is quite informative, nevertheless, 
it is desirable to change the basis on which it is defined so that the representation of the error-
performance surface is considerably simplified. To do this, we recall that 

 HR Q Q   (IV.105) 

Hence, substituting (IV.105) into (IV.104), we get 

    min
H H

o oJ J w w Q Q w w      (IV.106) 

Define a transformed version of the difference between the tap-weight vector w  and the optimum 

solution ow  as 

  H
ov Q w w   (IV.107) 
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Then we may put the quadratic form of (IV.106) into its canonical form defined by 

 min
HJ J v v    (IV.108) 

This new formulation of the mean-squared error contains no cross-product terms, as shown by 

 

min
1

2
min

1

M

k k k
k

M

k k
k

J J v v

J v











 

 




 (IV.109) 

The feature that makes the canonical form of (IV.108) a rather useful representation of the error-
performance surface is the fact that the components of the transformed coefficient vector v  
constitute the principal axes of the error-performance surface. 

IV.12. Numerical Example 

Consider the example depicted below. 

 

The desired response ( )d n  is modeled as an autoregressive (AR) process of order 1; that is, it may 

be produced by applying a white-noise process 1( )v n  of zero mean and variance 2
1 0.27   to the 

input of an all-pole filter of order 1, whose transfer function equals 

 1 1

1
( )

1 0.8458
H z

z 


 (IV.110) 

The process ( )d n  is applied to a communication channel modeled by the first order all-pole 
transfer function 

 2 1

1
( )

1 0.9458
H z

z 


 (IV.111) 
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The channel output ( )x n  is corrupted by an additive white-noise process 2( )v n  of zero mean and 

variance 2
2 0.1   so a sample of the received signal ( )u n  equals 

 2( ) ( ) ( )u n x n v n   (IV.112) 

The white-noise processes 1( )v n  and 2( )v n  are uncorrelated. It is also assumed that ( )d n  and 

( )u n , and therefore 1( )v n  and 2( )v n  are all real valued. 

The requirement is to specify a Wiener filter consisting of a transversal filter with two taps, which 
operates on the received signal ( )u n  so as to produce an estimate of the desired response ( )d n  
that is optimum in the mean-square sense. 

We begin the analysis by considering the difference equations that characterize the various 
processes described above. The generation of the desired response ( )d n  is governed by the first-
order difference equation 

 1 1( ) ( 1) ( )d n a d n v n    (IV.113) 

where 1 0.8458a  . The variance of the process ( )d n  equals 

 

2
2 1

2
11

0.9486

d
a

 




 (IV.114) 

Exercise IV-3 

Prove (IV.114). 

The channel output ( )x n  is related to the channel input ( )d n  by the first-order difference equation 

 1( ) ( 1) ( )x n b x n d n    (IV.115) 
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where 1 0.9458b   . Note that the channel output ( )x n  may be generated by applying the white-

noise process 1( )v n  to a second-order all-pole filter whose transfer function equals 

 

  

1 2

1 1
1 2

( ) ( ) ( )

1

1 1

H z H z H z

a z a z 




 

 (IV.116) 

Accordingly, ( )x n  is a second-order AR process described by the difference equation 

 1 2 1( ) ( 1) ( 2) ( )x x x n x n v n       (IV.117) 

where 1 0.1    and 2 0.8   . Note that both AR processes ( )d n  and are ( )x n  wide-sense 

stationary. 

Introducing 0 1   and 2M  , equation (IV.117) can be rewritten in the form 

 1
0

( ) ( )
M

k
k

x n k v n


   (IV.118) 

Multiplying both sides of (IV.118) by ( )x n l  and applying the expectation operation, we get 

  1
0

E ( ) ( ) E ( ) ( )
M

k
k

x n k x n l v n x n l


 
    

  
  (IV.119) 

Note that 

  E ( ) ( ) ( )xx n k x n l r l k     (IV.120) 

Note also that ( )x n l  only involves samples of the white-noise process at the filter input up to 
time n l . This mean that 

  E ( ) ( ) 0, 0v n x n l l    (IV.121) 

Therefore, (IV.119) simplifies to 

 
0

( ) 0, 0
M

k x
k

r l k l


    (IV.122) 

The general solution of (IV.122) can be expressed in the form 

 
1

( )
M

m
x k k

k

r m C p


  (IV.123) 

where   1
M

k k
C   are constants, and   1

M
k k

p   are the poles of ( )H z . 
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Since the processes ( )x n  and 2( )v n  are uncorrelated, it follows that the correlation matrix R  

equals the correlation matrix of ( )x n  plus the correlation matrix of 2( )v n . That is, 

 2xR R R   (IV.124) 

For the correlation matrix xR  we write [since the process ( )x n  is real valued]: 

 
(0) (1)

(1) (0)
x x

x
x x

r r
R

r r

 
  
 

 (IV.125) 

The values of 1  and 2  allow ( )x n  to be asymptotically stationary. Hence, the autocorrelation 

sequence of ( )x n  satisfies the difference equation 

 1 2( ) ( 1) ( 2) 0, 0x x xr l r l r l l        (IV.126) 

Note that 

 2(0)x xr   (IV.127) 

Solving (IV.126) for 1l   and 2l   yields 

 21

2

(1)
1x xr
 






 (IV.128) 

 
2

21
2

2
(2)

1x xr
 


 
     

 (IV.129) 

Note that letting 0l   in  1E ( ) ( )v n x n l , yields 

 
  2

1 1

2
1

E ( ) ( ) E ( )v n x n v n



   


 (IV.130) 

Using this result in (IV.119) for 0l   produces 

 
2
1

0

1 2

( )

(0) (1) (2)

M

k x
k

x x x

r k

r r r

 

 




  

  (IV.131) 

Using (IV.128) and (IV.129) in (IV.131) and solving for 2
x  yields 

 
 

2 22
12 2

2 2 1

1 1

1 1
x

 
  




  
 (IV.132) 
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Substituting for 2
1 , 1  and 2  in (IV.132) results in 

 2 1x   (IV.133) 

And hence, we get from (IV.127) and (IV.128) 

 (0) 1xr   (IV.134) 

 (1) 0.5xr   (IV.135) 

Which make xR  equal to 

 
1 0.5

0.5 1xR
 

  
 

 (IV.136) 

Note that since 2( )v n  is a white-noise process of zero mean and variance 2
2 0.1  , the 2 2  

correlation matrix 2R  equals 

 2
0.1 0

0 0.1
R

 
  
 

 (IV.137) 

Therefore, 

 
1.1 0.5

0.5 1.1
R

 
  
 

 (IV.138) 

Recall that the vector p  is given by 

 
(0)

( 1)

p
p

p

 
   

 (IV.139) 

For real processes, ( )p k  can be found from 

 
 ( ) E ( ) ( )

( )

p k u n k d k

p k

 

 
 (IV.140) 

Substituting (IV.113) and (IV.115) into (IV.140) yields 

 1( ) ( ) ( 1)x xp k r k b r k    (IV.141) 

From the last result we get 

 
0.5272

0.4458
p

 
   

 (IV.142) 
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The dependence of the mean-squared error on the tap-weight vector  0 1
T

w w w  is defined by 

(IV.100). Substituting all the needed quantities in (IV.100), 

  2 2
0 1 0 1 0 1( , ) 0.9486 1.0544 0.8916 1.1J w w w w w w      (IV.143) 

The inverse of the autocorrelation matrix is calculated as 

 1 1.1456 0.5208

0.5208 1.1456
R   

   
 (IV.144) 

And hence, the Wiener filter coefficient vector is given by 

 

1
0

0.8360

0.7853

w R p

 
   

 (IV.145) 

The MMSE can be found from (IV.102) to be equal to 

 min 0.1579J   (IV.146) 

 
Figure IV.4 
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