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SYLLABUS 

Course Catalog 

3 Credit hours (3 h lectures). Signal Analysis: equivalent low-pass and band-pass models, Hilbert Transform, power 
spectral density. Amplitude modulation and demodulation: large carrier and suppressed carrier, single side band, and 
vestigial side band, coherent and non-coherent detection; Angle modulation and demodulation: FM and PM, wide 
band and narrow band FM, transmission bandwidth, generation and demodulation of FM. Noise representation and 
analysis: SNR analysis of AM and FM systems. Pulse modulation techniques: sampling theorem, PAM, PPM, PWM, 
PCM, Delta Modulation. 

Textbook 

John G. Proakis and Masoud Salehi (2002), Communication Systems Engineering, 2nd ed., Prentice-Hall. 

References 

1. Simon Haykin (2001).  Communication Systems, 4th  ed. Wiley. 
2. Wayne Tomasi (2001). Electronic Communications Systems, Fundamentals through Advanced. 4th  ed. 

Prentice Hall. 
3. R. E. Ziemer and W. H. Traner (1995). Principles of Communications. 4th  ed. Wiley. 
4. Leon Couch II (2001). Digital and Analog Communication Systems. 6th  ed. Prentice Hall. 
5. A. B. Carlson (1986). Communication Systems. 3rd   ed. McGraw-Hill. 

Instructor 

Instructor:  Dr. Mohammad M. Banat 

Email Address:  banat@just.edu.jo  

Prerequisites 

Prerequisites by topic Signal Analysis, Random Signal Analysis 

Prerequisites by course EE 260, EE 360 

Prerequisite for EE 551 

Topics Covered 

Week Topics Chepters in Text 
1 Introduction 0 

2-3 Review of Signal Analysis Apx 2 
4 Lowpass Signal Representation Apx 2 

5-8 Amplitude Modulation 2 
9-11 Angle Modulation 2 
12 Pulse Modulation 3 

13-15 Review of Random Signal Analysis 1 
16 Noise in Communication Systems 2 
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Evaluation 

Assessment Tool Expected Due Date Weight 

Mid-Term Exam Sat. 7 August 2021 25% 

Class Work  25% 

Final Exam  50% 

Objectives and Outcomes 

Objectives Outcomes 

1. Ability to analyze signals and 
systems in time and frequency 
domains [1] 

1.1. Understanding Fourier transform and Fourier series for signals and 
systems and its properties [1]. 

1.2. Introducing band-pass models and the low-pass equivalent [1]. 
1.3. Studying Hilbert Transform [1]. 
1.4. Analyzing the transmission of signals through linear systems [1]. 

2. Understanding and analyzing 
different types of amplitude 
modulated signals [1] 

2.1. Defining amplitude modulation (AM) and its forms [1]. 
2.2. Differentiating between the double sideband-suppressed carrier, 

single sideband, and vestigial sideband modulations [1]. 
2.3. Understanding the generation and detection of AM signals [1]. 
2.4. Understanding frequency translation and frequency-division 

multiplexing [1]. 

3. Understanding and analyzing 
different types of angle 
modulated signals [1] 

3.1. Defining angle modulation [1]. 
3.2. Explaining different forms of frequency modulation (FM) (i.e., 

Narrow-band FM and Wide-band FM) [1]. 
3.3. Understanding the generation and detection of FM signals [1]. 
3.4. Understanding the phase-lock loop [1]. 
3.5. Studying nonlinear effects in FM signals [1]. 
3.6. Introducing the superheterodyne receiver [1]. 

4. Understanding sampling 
theorem and pulse modulation 
techniques [1] 

4.1. Appreciating the need for digitizing analogue signals [1]. 
4.2. Understanding the sampling theorem [1]. 
4.3. Differentiating between pulse-amplitude modulation and pulse-

position modulation [1]. 
4.4. Introducing time division multiplexing [1]. 
4.5. Introducing the quantization process [1]. 
4.6. Appreciating the importance of pulse-code modulation [1]. 
4.7. Introducing delta modulation [1]. 

5. Ability to evaluate the 
performance of modulated 
signals in the presence of 
additive white Gaussian noise 
[1,2] 

5.1. Understanding the effects noise in different AM receivers and FM 
receivers [1,2] 

CONTRIBUTION OF COURSE TO MEETING THE PROFESSIONAL COMPONENT 

The course contributes to building the fundamental basic concepts, applications, and design of 
communication systems in electrical Engineering. 
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Relationship to Program Outcomes (%) 

1 2 3 4 5 6 7 

90 10      
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I. INTRODUCTION TO COMMUNICATIONS 

A communication system is used to transmit information from one or more sending parties to one 
or more receiving parties. 

The purpose of a communication system is to deliver an information message signal from an 
information source in recognizable form to a user destination, with the source and the user being 
physically separated from each other. 

Transmitter Receiver
Channel

 

Figure I.1: Communication system 

Transmitter: Transmits data 

Channel: Transmission Medium 

Receiver: Receives Data 

I.1.A. TRANSMITTER 

To

Channel

Info.
Source

Source
Encoder

Channel
Encoder

Modulator

 

Figure I.2: Transmitter 

Information Source: Generates data to be transmitted, usually in the form of symbols from a finite 
alphabet. 

Source Encoder: 
Removes redundancy from the source symbol stream, in order to reduce the 
required transmission bit rate. 

Channel Encoder: 
Adds controlled redundancy to the source encoder symbol stream, in order to 
improve system error rate performance. 

Modulator: 
Maps the symbol stream into a finite set of signal waveforms. Each different 
symbol is assigned a different waveform that is transmitted during the 
duration of the symbol. 



Mohammad M. Banat – EE 450: Principles of Communication Systems 8 

I: Introduction to Communications 

 0-Objectives and Outcomes 

 

 

I.1.B. RECEIVER 

From

Channel

Info.
Destin.

Demodulator
Channel
Decoder

Source
Decoder

 

Figure I.3: Receiver 

Demodulator: 
Re-maps the received waveforms into an encoded symbol stream. Some 
symbol errors may occur due to channel impairments. Receiver performance 
is usually measured by the error rate. 

Channel Decoder: 
Removes the redundancy added by the channel encoder. Some decoding errors 
may occur due to demodulator errors. 

Source Decoder: 
Recovers part (lossy) or all (lossless) of the redundancy removed by the 
source encoder. 

Information 
Destination: 

Restores original form of transmitted information. Restoration is usually 
imperfect due to demodulation/decoding errors. 

I.1.C. CHANNEL 

Channel Types 

LINEAR NONLINEAR 

TIME-INVARIANT TIME-VARYING 

DISTORTING NON-DISTORTING 

STOCHASTIC DETERMINISTIC 

WIDEBAND NARROWBAND 

Channel Impairments 

ATTENUATION NOISE 

DISTORTION INTERFERENCE 

MULTIPATH AND FADING JAMMING 

NONLINEARITIES  

Transmission over Communication Channels 

GUIDED TRANSMISSION UNGUIDED TRANSMISSION 

WIRES RADIO/WIRELESS 

CABLES LIGHTWAVE 

WAVEGUIDES  
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OPTICAL FIBERS  

I.2. Communication Resources 

A transmitted communication signal consumes power and occupies bandwidth. Using higher 
transmit power results in better transmission reliability. Allocating more transmission bandwidth 
results in better transmission quality. A general system design objective is to use these power and 
bandwidth resources as efficiently as possible. 

In most communication channels, one resource may be considered more important than the other. 
We may therefore classify communication channels as power limited or band limited. For example, 
the telephone circuit is a typical band-limited channel, whereas a space communication link or 
satellite channel is typically power limited. 

I.2.A. POWER 

The transmitted power is the average power of the transmitted signal. Increasing the transmitted 
signal power generally improves the system performance. However, the cost of power 
consumption has to be taken into account. 

Some communication systems perform better than other systems using the same average 
transmitted power. 

I.2.B. BANDWIDTH 

The channel bandwidth is defined as the band of frequencies allocated for the transmission of the 
message signal. Channels with wider bandwidths generally carry more information. However, the 
cost of licensing bandwidth has to be taken into account. Sometimes the demanded bandwidth is 
not available at any cost, due to bandwidth allocation by local and international organizations. 

Some communication systems perform better than other systems using the same bandwidth. 

I.3. Modulation 

To achieve the goal of information transmission from the transmitter to the receiver, the transmitter 
modifies the message signal into a form suitable for transmission over the channel. This 
modification is achieved by means of a process known as modulation, which involves varying 
some parameter of a carrier wave in accordance with the message signal. The receiver recreates 
the original message signal from a degraded version of the transmitted signal after propagation 
through the channel. This recreation is accomplished by using a process known as demodulation, 
which is the reverse of the modulation process used in the transmitter. 

One important way to make the signal suitable for transmission over the channel is to carry the 
low-frequency signal on a higher-frequency carrier signal. To see how this can be done, imagine 
a 4 kHz audio signal to be transmitted over a wireless channel. The transmitting antenna height h  
is usually a faction, say a quarter, of the signal wavelength  . The antenna height should then be 
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However, with a 4 MHz carrier signal frequency, the antenna height becomes 

 

8 63 10 4 10

4
18.75 m

h
 





 (I.2) 

Clearly enough, the first antenna height is too far from practical, while the second one is reasonably 
practical, especially for broadcasting stations. 

Owing to the unavoidable presence of noise and distortion in the received signal, we find that the 
receiver cannot recreate the original message signal exactly. The resulting degradation in overall 
system performance is influenced by the type of modulation scheme used. Specifically, we find 
that some modulation schemes are less sensitive to the effects of noise and distortion than others. 

We may classify the modulation process into continuous-wave modulation and pulse modulation. 
In continuous-wave (CW) modulation, a sinusoidal wave is used as the carrier. When the 
amplitude of the carrier is varied in accordance with the message signal, we have amplitude 
modulation (AM), and when the angle of the carrier is varied, we have angle modulation. The latter 
form of CW modulation may be further subdivided into frequency modulation (FM) and phase 
modulation (PM), in which the instantaneous frequency or phase of the carrier, respectively, is 
varied in accordance with the message signal. 

In pulse modulation, on the other hand, the carrier consists of a periodic sequence of rectangular 
pulses. Pulse modulation can itself be of an analog or digital type. In analog pulse modulation, the 
amplitude, duration, or position of a pulse is varied in accordance with sample values of the 
message signal. In such a case, we speak of pulse-amplitude modulation (PAM), pulse-duration 
modulation (PDM), and pulse-position modulation (PPM). 

The standard digital form of pulse modulation is known as pulse-code modulation (PCM) that has 
no CW counterpart. PCM starts out essentially as PAM, but with an important modification: The 
amplitude of each modulated pulse (i.e., sample of the original message signal) is quantized or 
rounded off to the nearest value in a prescribed set of discrete amplitude levels and then coded into 
a corresponding sequence of binary symbols. The binary symbols 0 and 1 are themselves 
represented by pulse signals that are suitably shaped for transmission over the channel. In any 
event, as a result of the quantization process, some information is always lost and the original 
message signal cannot therefore be reconstructed exactly. However, provided that the number of 
quantizing (discrete amplitude) levels is large enough, the distortion produced by the quantization 
process is not discernible to the human ear in the case of a speech signal or the human eye in the 
case of a two-dimensional image. 
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I.4. Multiplexing 

In introducing the idea of modulation, we stressed its importance as a process that ensures the 
transmission of a message signal over a prescribed channel. There is another important benefit, 
namely, multiplexing, that results from the use of modulation. Multiplexing is the process of 
combining several message signals for their simultaneous transmission over the same channel. 
Three commonly used methods of multiplexing are as follows: 

 Frequency-division multiplexing (FDM), in which CW modulation is used to translate each 
message signal to reside in a specific frequency slot inside the passband of the channel by 
assigning it a distinct carrier frequency; at the receiver, a bank of filters is used to separate 
the different modulated signals and prepare them individually for demodulation. 

 Time-division multiplexing (TDM), in which pulse modulation is used to position samples 
of the different message signals in non-overlapping time slots. 

 Code-division multiplexing (CDM), in which each message signal is identified by a 
distinctive code. 

In FDM the message signals overlap with each other at the channel input; hence the system may 
suffer from crosstalk (i.e., interaction between message signals) if the channel is nonlinear. In 
TDM the message signals use the full passband of the channel, but on a timeshared basis. In CDM 
the message signals are permitted to overlap in both time and frequency across the channel. 

Mention should also be made of wavelength-division multiplexing (WDM), which is special to 
optical fibers. In WDM, wavelength is used as a new degree of freedom by concurrently operating 
distinct portions of the wavelength spectrum (i.e., distinct colors) that are accessible within the 
optical fiber. However, recognizing the reciprocal relationship that exists between the wavelength 
and frequency of an electromagnetic wave, we may say that WDM is a form of FDM. 

I.5. Analog and Digital Communications 

In an analog communication system, there is no significant effort made by the system designer to 
tailor the waveform of the transmitted signal to suit the channel at any deeper level. On the other 
hand, digital communication theory endeavors to find a finite set of waveforms that are closely 
matched to the characteristics of the channel and which are therefore more tolerant of channel 
impairments. In so doing, reliable communication is established over the channel. In the selection 
of good waveforms for digital communication over a noisy channel, the design is influenced solely 
by the channel characteristics. However, once the appropriate set of waveforms for transmission 
over the channel has been selected, the source information can be encoded into the channel 
waveforms, and the efficient transmission of information from the source to the user is thereby 
ensured. In summary, the use of digital communications provides the capability for information 
transmission that is both efficient and reliable. 

From this discussion, it is apparent that the use of digital communications requires a considerable 
amount of electronic circuitry, but nowadays electronics are inexpensive, due to the ever-
increasing availability of very-large-scale integrated (VLSI) circuits in the form of silicon chips. 
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Thus although cost considerations used to be a factor in selecting analog communications over 
digital communications in the past, that is no longer the case. 

I.6. Signal Classifications 

BASEBAND BANDPASS 

PERIODIC APERIODIC 

ENERGY POWER 

I.6.A. BASEBAND SIGNALS 

When the frequency spectrum of the signal is centered at zero frequency and is of finite extent, 
the signal is baseband. 

In communication systems, the message is usually represented using a baseband waveform. Note 
that in Figure I.4, the signal bandwidth is equal to W . 

f

( )S f

(0)S

W W  

Figure I.4: Spectrum of Baseband Signal 

I.6.B. BANDPASS SIGNALS 

When the frequency spectrum of the signal is centered at 0cf  and is of finite extent, the signal 

is bandpass. 

In communication systems, the transmitted signal is usually bandpass. Note that in Figure I.5, the 
signal bandwidth is equal to 2W . 

f

( )S f

( )cS f

cf cf

2W

 

Figure I.5: Spectrum of Bandpass Signal 
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I.7. Fourier Analysis 

Let ( )g t  be a non-periodic deterministic signal. The Fourier transform is defined as: 

 2( ) ( ) j ftG f g t e dt






   (I.3) 

The inverse transform is: 

 2( ) ( ) j ftg t G f e df




   (I.4) 

I.7.A. DIRAC DELTA FUNCTION 
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t



  

 (I.5) 

Note that ( )t  is an even function of time. 
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 (I.6) 

Sifting Property 

Give that ( )g t  is a continuous function of time, 

 0 0( ) ( ) ( )g t t t dt g t




   (I.7) 

 0 0( ) ( )t t t t     (I.8) 

 0 0( ) ( ) ( ) ( ) )( ) ( )( () ) (g tg t t t dt g t g t g t td g t   








        (I.9) 
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I.7.B. FOURIER TRANSFORM OF PERIODIC SIGNALS 

Let 
0
( )Tg t  be periodic with period 0T . The Fourier series of 

0
( )Tg t  is: 

 0
0

2( ) j nf t
T n

n

g t c e 



   (I.10) 

where nc  is the complex Fourier series coefficient, given by: 

 
0

0
0

0

2
2

0 2

1
( )

T
j nf t

n T
T

c g t e dt
T





   (I.11) 

0 01f T  is known as the fundamental frequency. 

Given, 

 0

0 0( ),
( ) 2 2

0, elsewhere

T
T T

g t t
g t

    


 (I.12) 

Then, 

 
0 0( ) ( )T

m

g t g t mT



   (I.13) 

Using the time shifting property of the Fourier Transform, 

 0
0

2( ) ( ) j fmT
T

m

G f G f e 





    (I.14) 

Equation (I.11) can be rewritten using ( )g t  in the form 

 
02

0

0 0

( )

( )

j nf t
nc f g t e dt

f G nf












  (I.15) 

Therefore, (I.10) can be rewritten as 

 0
0

2
0 0( ) ( ) j nf t

T
n

g t f G nf e 



   (I.16) 
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Poisson's Sum Formula 

Using (I.13), the result in (I.16) can be rewritten in the form 

 02
0 0 0( ) ( ) j nf t

m n

g t mT f G nf e 
 

 
    (I.17) 

Equation (I.17) is known as the Poisson's sum formula. 

I.7.C. PROPERTIES OF THE FOURIER TRANSFORM 

Linearity 

 1 1 2 2 1 1 2 2( ) ( ) ( ) ( )a g t a g t a G f a G f    (I.18) 

Time Scaling 

 
1

( )
f

g at G
a a

 
 
 

   (I.19) 

Duality 

 ( ) ( ) ( ) ( )g t G f G t g f     (I.20) 

Time Shifting 

 02
0( ) ( ) j ftg t t G f e     (I.21) 

Frequency Shifting 

 02
0( ) ( )j f tg t e G f f    (I.22) 

Area in the Time Domain 

 ( ) (0)g t dt G




   (I.23) 

Area in the Frequency Domain 

 ( ) (0)G f df g




   (I.24) 

Time Differentiation 

 ( ) 2 ( )
d

g t j fG f
dt

   (I.25) 
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Time Integration 

 
1 (0)

( ) ( )
2 2

( )
t

G
G f f

j f
g d 


 



    (I.26) 

Conjugation 

 ( ) ( )g t G f     (I.27) 

Time Multiplication 

 1 2 1 2( ) ( ) ( ) ( )g t g t G G f d  




   (I.28) 

Time Convolution 

 1 2 1 2( ) ( ) ( ) ( )g g t d G f G f  




    (I.29) 

I.7.D. FOURIER TRANSFORM PAIRS 

 1 ( )f   (I.30) 

 ( ) 1t    (I.31) 

 02
0( ) j ftt t e      (I.32) 

 2 ( )cj f t
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2c c cf t f f f f       (I.34) 

    1
sin 2 ( ) ( )

2c c cf t f f f f
j

       (I.35) 

 rect sinc( )
t

T fT
T
 
 
 

   (I.36) 

 
1

sinc( ) rect
f

Wt
W W

 
 
 

   (I.37) 

 
1

( ) , 0
2

ate u t a
a j f

 


   (I.38) 
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2 2

2

(2 )

a t a
e

a f



   (I.39) 

 
2 2t fe e     (I.40) 

 21 ,
sinc ( )

0,

t
t T

T fTT
t T


 


 

   (I.41) 

 
1

sgn( )t
j f

   (I.42) 

 
1

sgn( )j f
t

   (I.43) 

 
1 1

( ) ( )
2

u t f
j f




 
 

 
   (I.44) 

 0
0 0

1
( )

i i

i
t iT f

T T
 

 

 

 
  

 
    (I.45) 

I.8. Transmission of Signals Through Linear Systems 

Let the impulse response of an LTI system be ( )h t . Let the input be ( )x t . Therefore, the output is 
given by: 

 

( ) ( ) ( )

( ) ( )

y t x t h t

x h t d  




 

 
 (I.46) 

This is called the convolution integral. Equivalently, we may write 

 

( ) ( ) ( )

( ) ( )

y t h t x t

h x t d  




 

 
 (I.47) 

Exercise I.1 

Determine the output of an LTI system when the input and impulse response are given, respectively 
by: 

( ) ( ) ( )x t u t u t T    
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( ) ( )th t e u t  

where T  and   are finite positive constants. 

Consider a linear time-invariant system with impulse response ( )h t  driven by a complex 
exponential input of unit amplitude and frequency f , i.e., 

 2( ) j ftx t e   (I.48) 

The response of the system to this input is obtained using the convolution operation as 

 

2 ( )

2 2

( ) ( )

( )

j f t

j ft j f

y t h e d

e h e d

 

  

 

 


















 (I.49) 

Define the frequency response of the system as the Fourier transform of its impulse response 
(Frequency Response), 

as shown by 

 2( ) ( ) j ftH f h t e dt






   (I.50) 

Hence, 

 
2

( 2)(

( ) ( )

)

j

tj

ft

jf feH

y t H f e

ef



 




 (I.51) 

The response of a linear time-invariant system to a complex exponential function of frequency f  
is, therefore, the same complex exponential function multiplied by a frequency-dependent 
coefficient ( )H f . Note that the value of ( )H f  depends on the frequency of the input. 

The frequency response ( )H f  is, in general, a complex quantity, so we may express it in the polar 
form 

 ( )( ) ( ) j fH f eH f   (I.52) 

where ( )H f  is called the magnitude response, and ( )f  is the phase, or phase response. In the 

special case of a linear system with a real-valued impulse response ( )h t , the frequency response 
( )H f  exhibits conjugate symmetry, which means that 
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 ( ) ( )H f H f  (I.53) 

 ( ) ( )f f     (I.54) 

Exercise I.2 

Determine the output of an LTI system when the input and impulse response are given, respectively 
by: 

( ) 8sin 20
3

x t t
   

 
 

3( ) ( )th t e u t  

I.8.A. FILTERS 

Low-Pass Filters 

The ideal lowpass filter is defined by the frequency response 

 

1,
( )

0, otherwise

rect
2

LPF
f B

H f

f

B

 
 


   
 

 (I.55) 

f

1

B B

( )LPFH f

 

where B  is the filter cut off frequency, or bandwidth. 

Exercise I.3 

Determine the impulse response of ( )LPFH f . 

Exercise I.4 

Determine the frequency response and the impulse response of the following circuit 
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( )iv t





R

C ( )ov t





 

High-Pass Filters 

The ideal lowpass filter is defined by the frequency response 

 

1,
( )

0, otherwise

1 ( )

HPF

LPF

f B
H f

H f

 
 


 

 (I.56) 

f

1

B B

( )HPFH f

 

Exercise I.5 

Determine the impulse response of ( )HPFH f . 

Exercise I.6 

Determine the frequency response and the impulse response of the following circuit 

( )iv t





R

C

( )ov t





 

Band-Pass Filters 

The ideal lowpass filter is defined by the frequency response 
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   

1 2

1 2 1 2

2 1 2 1

1,
( )

0, otherwise

2 2
rect rect

BPF
f f f

H f

f f f f f f

f f f f

  
 


      
        

 (I.57) 

f

( )BPFH f

1f 2f2f 1f

1

 

Exercise I.7 

Determine the impulse response of ( )BPFH f . 

Exercise I.8 

Sketch a BPF circuit, and determine its frequency response and impulse response. 

I.8.B. BANDWIDTH 

The time-domain and frequency-domain descriptions of a signal are inversely related. In particular, 
we may make the following important statements: 

 If the time-domain description of a signal is changed, the frequency-domain description of 
the signal is changed in an inverse manner, and vice versa. This inverse relationship 
prevents arbitrary specifications of a signal in both domains. In other words, we may 
specify an arbitrary function of time or an arbitrary spectrum, but we cannot specify both 
of them together. 

 In general, if a signal is strictly limited in frequency, the time-domain description of the 
signal will trail on indefinitely, even though its amplitude may assume a progressively 
smaller value. We say a signal is strictly limited in frequency or strictly band limited if its 
Fourier transform is exactly zero outside a finite band of frequencies. The sinc pulse is an 
example. An exception of this rule if the Gaussian waveform, which is infinitely extended 
in both domains. 

 The bandwidth of a signal provides a measure of the extent of significant spectral content 
of the signal for positive frequencies. When the signal is strictly band limited, the 
bandwidth is well defined. Consider the pulse 

( ) sinc(2 )

sin(2 )

2

x t Wt

Wt

Wt







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1
( ) rect

2 2

f
X f

W W
   
 

 

The bandwidth of this signal is W . 

There is no universally accepted definition of bandwidth. Nevertheless, there are some 
commonly used definitions for bandwidth. 

Null-to-null bandwidth 

When the spectrum of a signal is symmetric with a main lobe bounded by well-defined nulls (i.e., 
frequencies at which the spectrum is zero), we may use the main lobe as the basis for defining the 
bandwidth of the signal. 

Specifically, if the signal is low-pass (i.e., its spectral content is centered around the origin), the 
bandwidth is defined as one half the total width of the main spectral lobe since only one half of 
this lobe lies inside the positive frequency region. For example, a rectangular pulse of duration T  
seconds has a main spectral lobe of total width 2 T  Hertz centered at the origin. Accordingly, we 

may define the bandwidth of this rectangular pulse as 1 T  Hertz. 

If, on the other hand, the signal is band-pass with main spectral lobes centered around cf   where 

cf  is large enough, the bandwidth is defined as the width of the main lobe for positive frequencies. 

On the basis of the definitions presented here, we may state that shifting the spectral content of a 
low-pass signal by a sufficiently large frequency has the effect of doubling the bandwidth of the 
signal; such a frequency translation is attained by using modulation. 

3 dB Bandwidth 

If the signal is low-pass, the 3-dB bandwidth is defined as the separation between zero frequency, 
where the magnitude spectrum attains its peak value, and the positive frequency, at which the 

amplitude spectrum drops to 1 2  of its peak value. 

Example I.1 

Let 

( ) ( )atx t e u t , where 0a   

Then 

 
2 2

2 22

1 1 1
( ) ( ) (0)

2 2
X f X f X

a j f aa f 
    

 
 

2 2
0 0 02

1 1
( ) (0)  when 2

2 22

a
X f X f a f

a



      
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If the signal is band-pass, centered at cf , the 3-dB bandwidth is defined as the separation (along 

the positive frequency axis) between the two frequencies at which the magnitude spectrum of the 

signal drops to 1 2  of the peak value at cf . 

RMS Bandwidth 

For a lowpass ( )g t , 

 

1 2
22

rms
2

( )

( )

f G f df

W

G f df








 
 
 

  
 
 
 




  (I.58) 

I.8.C. TIME-BANDWIDTH PRODUCT 

For any family of pulse signals that differ by a time-scaling factor, the product of the signal's 
duration and its bandwidth is always a constant, as shown by 

 Duration  Bandwidth = Constant   (I.59) 

Example I.2 

A rectangular pulse ( )x t  of duration T  seconds has a bandwidth (defined on the basis of the 

positive-frequency part of the main lobe) equal to 1 T  hertz, making the time-bandwidth product 
of the pulse equal unity. 

The pulse (2 )x t  has a duration of 2T  and a bandwidth of 2 T , making the time-bandwidth 
product of the pulse equal to unity again. 

RMS Duration 

For a ( )g t  that is centered about the origin, 

 

1 2
22

rms
2

( )

( )

t g t dt

T

g t dt








 
 
 

  
 
 
 




  (I.60) 

 rms rms
1

4
T W


   (I.61) 

The equality in (I.61) holds when 
2

( ) tg t e   (gaussian pulse). 
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I.8.D. INNER PRODUCT 

The inner product (dot product) of two signals ( )x t  and ( )y t  (also called the cross-correlation) is 
defined as 

 

( ), ( )

( ) ( )

( ) ( )

xyR x t y t

x t y t dt

X f Y f df





















 (I.62) 

The complex quantity xy , called the cross-correlation coefficient of ( )x t  and ( )y t , is defined as 

 
( ), ( )

xy
xy

x y

x y

R

x t y t

 



E E

E E

 (I.63) 

 1xy    (I.64) 

I.8.E. NOISE EQUIVALENT BANDWIDTH 

Suppose that a white noise source of power spectral density 0 2N  is connected to the input of the 

simple RC low-pass filter 

 

Note that 

 0( )
2W

N
S f    (I.65) 
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 
 

1 2
( )

1 2

1

1 2

j fC
H f

R j fC

j RCf












  (I.66) 

 
 

2
2

1
( )

1 2
H f

RCf



  (I.67) 

 2
(0) 1H    (I.68) 

 3dB
1

2
W

RC
   (I.69) 

 
 

0
2

1
( )

2 1 2
N

N
S f

RCf



  (I.70) 

 
 

0
2

0

( )

1

2 1 2

4

N NP S f df

N
df

RCf

N

RC























  (I.71) 

We find that the average output noise power of the filter is proportional to the filter bandwidth. 
We may generalize this statement to include all kinds of low-pass filters by defining a noise 
equivalent bandwidth. Suppose that a zero-mean white noise source of power spectral density 

0 2N  is connected to the input of a low-pass filter with the transfer function ( )H f . At the filter 

output, 

 

20

2
0

0

( )
2

( )

N
N

P H f df

N H f df













  (I.72) 

Consider next the same source of white noise connected to the input of an ideal lowpass filter of 
zero-frequency response (0)H  and bandwidth B . In this case, the average output noise power is 
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 2
0 (0)NP N BH   (I.73) 

Equating NP  in (I.73) with NP  in (I.72) yields 

 

2

0
2

( )

(0)

H f df

B
H






  (I.74) 

*** 
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II. LOWPASS EQUIVALENT SIGNAL MODELING 

II.1. Hilbert Transform 

II.1.A. BASICS 

The Hilbert transform is defined by: 

 

1
ˆ( ) ( )

1 ( )

g t g t
t

g
d

t



 
 





 




 (II.1) 

 
1

sgn( )j f
t

  (II.2) 

 

1, 0

sgn( ) 0, 0

1, 0

f

f f

f


 
 

 (II.3) 

 ˆ ( ) sgn( ) ( )G f j f G f   (II.4) 

Hilbert transform shifts positive frequencies by -90ᵒ, and negative frequencies by 90ᵒ. 

II.1.B. PROPERTIES OF THE HILBERT TRANSFORM 

1. ˆ ( )( ) G fG f  . 

2. ˆ̂ ( ) ( )g t g t  . 

3. If ( )g t  is even, then ˆ( )g t  is odd. 

4. If ( )g t  is odd, then ˆ( )g t  is even. 

5. Orthogonality: ˆ( ) ( ) 0g t g t dt




 . 

6. Energy: 2 2ˆ( ) ( )g t dt g t dt
 

 

   

II.1.C. PRE-ENVELOPE 

Let ( )g t  be a real bandpass signal. Note that ( )G f  is conjugate symmetric, i.e., 

 ( ) ( )G f G f   (II.5) 
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The pre-envelopes of ( )g t  are defined as follows: 

 ˆ( ) ( ) ( )g t g t jg t    (II.6) 

 
*

ˆ( ) ( ) ( )

( )

g t g t jg t

g t





 


 (II.7) 

This means that 

 ( ) ( )G f G f
    (II.8) 

Note that from (II.6) and (II.7), 

  1
( ) ( ) ( )

2
g t g t g t    (II.9) 

This means that 

 
 1

( ) ( ) ( )
2
1

( ) ( )
2

G f G f G f

G f G f

 


 

 

    

 (II.10) 

From (II.10) we can easily see that ( )G f  is sufficient to reconstruct ( )G f . From (II.6): 

    
( ) ( ) sgn( ) ( ) ( ) ( ) sgn( ) ( )

( ) 1 sgn( ) | ( ) 1 sgn( )

2 ( ), 0 2 ( ), 0

(0), 0 (0), 0

0, 0 0, 0

G f G f f G f G f G f f G f

G f f G f f

G f f G f f

G f G f

f f

    

  

  
    
   

 (II.11) 

Note that when ( )g t  is bandpass ( )G f  and ( )G f  do not overlap. The energy in ( )g t  can be 

found from 

 

2

2

( )

( )

g g t dt

G f df
















E

 (II.12) 

Substituting for ( )G f  from (II.10) yields 
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   21
( ) ( )

4g G f G f df


 


 E  (II.13) 

Since ( )G f  and ( )G f  do not overlap, (II.13) can be rewritten in the form 

 
 2 21

( ) ( )
4

1

2

g

g

G f G f df





 


 



E

E

 (II.14) 

II.1.D. COMPLEX ENVELOPE 

Let ( )g t  be narrowband, with ( )G f  centered at cf . Then, 

 2( ) ( ) cj f tg t g t e 
  (II.15) 

Or, 

 2( ) ( ) cj f tg t g t e 
    (II.16) 

This means that 

 ( ) ( )cG f G f f   (II.17) 

Note that from (II.17), 

 g g 
E E  (II.18) 

This means that 

 
1

2g g E E  (II.19) 

Note that 

 
( ) ( )

( ), ( )

g g t g t dt

g t g t










E
 (II.20) 
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f

( )G f

( )cG f

cf cf

2W

 

f

( )G f

2 ( )cG f

cf

2W

 

f

( )G f

2 ( )cG f

WW  

 
 
 2

( ) Re ( )

Re ( ) cj f t

g t g t

g t e 



 
 (II.21) 

 ( ) ( ) ( )I Qg t g t jg t   (II.22) 

    2 2( ) ( ) cos ( )sinc cI Qf t f tg t g t g t    (II.23) 

 
 
 2

ˆ( ) Im ( )

Im ( ) cj f t

g t g t

g t e 



 
 (II.24) 

    ˆ 2 2( ) ( )cos ( )sinc cQ If t f tg t g t g t    (II.25) 

Note that 
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 1 2 1 2
1

( ), ( ) ( ), ( )
2

g t g t g t g t    (II.26) 

Note also that 

  1 2 1 2
Reg g g g     (II.27) 

    2 2( ) ( ) cos ( )sinc cI Qf t f tx t x t x t    (II.28) 

Example II.1 

Let ( )m t  be a baseband signal with bandwidth W  and energy mE . Let  ( ) ( ) cos 2 cx t m t f t  

and  ( ) ( )sin 2 cy t m t f t , where cf W . 

( ) ( )

( ) 0
I

Q

x t m t

x t




 

( ) 0

( ) ( )
I

Q

y t

y t m t


 

 

( ) ( )

( ) ( )

x t m t

y t jm t


 


  

xy mj  E  

0xy   

Since their cross-correlation is zero, ( )x t  and ( )y t  are said to be orthogonal. 

II.1.E. ENVELOPE 

The complex envelope ( )g t  can be written in polar form as follows: 

 ( )( ) ( ) j tg t a t e   (II.29) 

 2

( ) ( )

( )

( )

cj f t

a t g t

g t e

g t














 (II.30) 

 2 2( )= ( ) ( )I Qa t g t g t  (II.31) 
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 1 ( )
( ) tan

( )
Q

I

g t
t

g t
   

  
 

 (II.32) 

  2 ( )( ) ( )cos cf t tg t a t    (II.33) 

 ( ) ( ) cos ( )Ig t a t t  (II.34) 

 ( ) ( )sin ( )Qg t a t t  (II.35) 
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2cos(2 )cf t

2sin(2 )cf t

( )Ig t

( )Qg t
 

( )Ig t

( )Qg t





Oscillator

-90⸰ Phase 
Shifter

 ( )g t

cos(2 )cf t

sin(2 )cf t




 

II.1.F. BAND-PASS SYSTEMS 

Let ( )x t  be a narrowband signal. Then, 

    2 2( ) ( ) cos ( )sinc cI Qf t f tx t x t x t    (II.36) 

 ( ) ( ) ( )I Qx t x t jx t   (II.37) 
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Let ( )x t  be applied to a linear time-invariant band-pass system with impulse response ( )h t . 

    2 2( ) ( )cos ( )sinc cI Qf t f th t h t h t    (II.38) 

 ( ) ( ) ( )I Qh t h t jh t   (II.39) 

 
 
 

2

2 2*

( ) Re ( )

1
( ) ( )

2

c

c c

j f t

j f t j f t

h t h t e

h t e h t e



 



 



 
 (II.40) 

  *1
( ) ( ) ( )

2 c cH f H f f H f f       (II.41) 

Note that since ( )h t  is a real function, then ( )H f  satisfies 

 *( ) ( )H f H f   (II.42) 

This can also be deduced from (II.41). 

Note that in (II.41), ( )cH f f  is centered at cf  while *( )cH f f   is centered at cf . 

Therefore, 

 ( ) 2 ( ), 0cH f f H f f    (II.43) 

  2( ) Re ( ) cj f ty t y t e    (II.44) 

 
1

( ) ( ) ( )
2

y t x t h t     (II.45) 

 
   

   

1
( ) ( ) ( ) ( )( )

2
1 ( )* ( ) ( )* ( ) ( )* ( ) ( )* ( )
2

I Q I Q

I I Q Q I Q Q I

x t jx t h t jh ty t

x t h t x t h t x t h t x t h tj

  

     


 (II.46) 

Therefore, 

  1
( )* ( ) ( )* ( )( )

2
I I Q QI x t h t x t h ty t   (II.47) 

  1
( )* ( ) ( )* ( )( )

2
I Q Q IQ x t h t x t h ty t   (II.48) 

*** 
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III. AMPLITUDE MODULATION 

The purpose of a communication system is to transmit information-bearing signals through a 
communication channel separating the transmitter from the receiver. Information bearing signals 
are generally baseband signals. 

The proper use of the communication channel requires a shift of the range of baseband frequencies 
into bandpass frequency ranges suitable for transmission, and a corresponding shift back to the 
original frequency range after reception. 

A shift of the range of frequencies in a signal is accomplished by using modulation, which is 
defined as the process by which some characteristic of a carrier is varied in accordance with a 
modulating wave (message signal). 

A common form of the carrier is a sinusoidal wave, in which case we speak of a continuous-wave 
modulation process. 

The baseband signal is referred to as the modulating wave, and the result of the modulation process 
is referred to as the modulated wave. Modulation is performed at the transmitting end of the 
communication system. At the receiving end of the system, we usually require the original 
baseband signal to be restored. This is accomplished by using a process known as demodulation, 
which is the reverse of the modulation process. 

In AM, the amplitude of a sinusoidal carrier is varied linearly in accordance with an incoming 
message signal. 

 

Figure III.1: Message (modulating) signal 
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Figure III.2: Carrier signal 

 

Figure III.3: Modulated signal 

Consider a sinusoidal carrier wave ( )c t  defined by 

  ( ) cos 2c cc t A f t   (III.1) 

Let ( )m t  denote the baseband signal that carries the specification of the message. The source of 
carrier wave ( )c t  is physically independent of the source responsible for generating ( )m t . 
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Amplitude modulation (AM) is defined as a process in which the amplitude of the carrier wave 
( )c t  is varied about a mean value, linearly with the baseband signal ( )m t . 

An amplitude-modulated (AM) wave may thus be described, in its most general form, as a function 
of time as follows: 

 

   
   

 
Unmodulated Carrier Sidebands

Unmodulated Carrier

( ) 1 ( ) cos 2

cos 2 ( )cos 2

( ) ( ) ( ) ( ) (
2 2

c a c

c c c a c

c a c
c c c

s t A k m t f t

A f t A k m t f t

A k A
S f f f f f M f f M f



 

 

 

 

       

 


 

Sidebands

)cf


  (III.2) 

where ak  is a constant called the amplitude sensitivity of the modulator responsible for the 

generation of the modulated signal ( )s t . Typically, the carrier amplitude cA  and the message 

signal ( )m t  are measured in volts, in which case ak  is measured in V-l. 

 

We observe that the envelope of ( )s t  has essentially the same shape as the baseband signal ( )m t  
provided that two requirements are satisfied: 

1. The amplitude of ( )ak m t  is always less than unity, that is, 

 ( ) 1,ak m t t    (III.3) 

1 1( ) ,ak m t t    
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2. The carrier frequency cf  is much larger than the message signal bandwidth W . 

From (III.2), 

        ( )
2 2

c a c
c c c c

A k A
S f f f f f M f f M f f                 (III.4) 

 

 2TB W   (III.5) 

III.1. Virtues of Amplitude Modulation 

 In the transmitter, amplitude modulation is accomplished using a nonlinear device. For 
example, in the switching modulator discussed in Problem 2.3, the combined sum of the 
message signal and carrier wave is applied to a diode, with the carrier amplitude being 
large enough to swing across the characteristic curve of the diode. Fourier analysis of the 
voltage developed across a resistive load reveals the generation of an AM component, 
which may be extracted by means of a band-pass filter. 

 In the receiver, amplitude demodulation is also accomplished using a nonlinear device. For 
example, we may use a simple and yet highly effective circuit known as the envelope 
detector, which is discussed in Problem 2.5. The circuit consists of a diode connected in 
series with the parallel combination of a capacitor and load resistor. Some version of this 
circuit is found in most commercial AM radio receivers. Provided that the carrier frequency 
is high enough and the percentage modulation is less than 100 percent, the demodulator 
output developed across the load resistor is nearly the same as the envelope of the incoming 
AM wave, hence the name "envelope detector." 

III.2. Limitations of Amplitude Modulation 

 Amplitude modulation is wasteful of power. The carrier wave is completely independent 
of the information-bearing signal. The transmission of the carrier wave therefore represents 
a waste of power, which means that in amplitude modulation only a fraction of the total 
transmitted power is actually affected by the message signal. 

 Amplitude modulation is wasteful of bandwidth. The upper and lower sidebands of an AM 
wave are uniquely related to each other by virtue of their symmetry about the carrier 
frequency; hence, given the magnitude and phase spectra of either sideband, we can 
uniquely determine the other. This means that insofar as the transmission of information is 
concerned, only one sideband is necessary, and the communication channel therefore needs 
to provide only the same bandwidth as the baseband signal. In light of this observation, 
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amplitude modulation is wasteful of bandwidth as it requires a transmission bandwidth 
equal to twice the message bandwidth. 

To overcome these limitations, we must make certain modifications: suppress the carrier and 
modify the sidebands of the AM wave. These modifications naturally result in increased system 
complexity. In effect, we trade system complexity for improved use of communication resources. 
The basis of this trade-off is linear modulation. In a strict sense, full amplitude modulation does 
not qualify as linear modulation because of the presence of the carrier wave. 

III.2.A. EXAMPLE 

Let 
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III.3. Linear Modulation Schemes 

In its most general form, linear modulation is defined by 

    ( ) ( ) cos 2 ( )sin 2I c Q cs t s t f t s t f t     (III.6) 

where ( )Is t  is the in-phase component of the modulated wave ( )s t , and ( )Qs t  is its quadrature 

component. 

In linear modulation, both ( )Is t  and ( )Qs t  are low-pass signals that are linearly related to the 

message signal ( )m t . 

 Double sideband-suppressed carrier (DSB-SC) modulation, where only the upper and 
lower sidebands are transmitted. Bandwidth= 2W . 

 Single sideband (SSB) modulation, where only one sideband (the lower sideband or the 
upper sideband) is transmitted. Bandwidth=W . 

 Vestigial sideband (VSB) modulation, where only a vestige (i.e., trace) of one of the 
sidebands and a correspondingly modified version of the other sideband are transmitted. 
W  Bandwith 2W . 
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The in-phase component ( )Is t  is solely dependent on the message signal ( )m t . 

The quadrature component ( )Qs t  is a filtered version of ( )m t . The spectral modification of the 

modulated wave sit) is solely due to ( )Qs t . 

To be more specific, the role of the quadrature component (if present) is merely to interfere with 
the in-phase component, so as to reduce or eliminate power in one of the sidebands of the 
modulated signal sit), depending on how the quadrature component is defined. 

III.3.A. DOUBLE SIDEBAND-SUPPRESSED CARRIER (DSB-SC) MODULATION 

This form of linear modulation is generated by using a product modulator that simply multiplies 
the message signal ( )m t  by the carrier wave ( )c t . 

  ( ) ( ) ( ) ( )cos 2c cs t m t c t A m t f t    (III.7) 
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    ( )
2

c
c c

A
S f M f f M f f        (III.8) 

Of course, the transmission bandwidth required by DSB-SC modulation is the same as that for 
amplitude modulation, namely, 2W . 

Coherent Detection 

The baseband signal ( )m t  can be uniquely recovered from a DSB-SC wave ( )s t  by first 
multiplying ( )s t  with a locally generated sinusoidal wave and then low-pass filtering the product. 

 

  ( ) ( ) ( ) ( ) cos 2c cs t m t c t A m t f t      (III.9) 

It is assumed that the local oscillator signal is exactly coherent or synchronized, in both frequency 
and phase, with the carrier wave ( )c t  used in the product modulator to generate ( )s t . This method 
of demodulation is known as coherent detection. 

It is instructive to derive coherent detection as a special case of the more general demodulation 
process using a local oscillator signal of the same frequency but arbitrary phase difference  , 
measured with respect to the carrier wave ( )c t . Thus, denoting the local oscillator signal by 

 cos 2c cA f t   . The product modulator output is 

    1 1
( ) cos 2 2 ( ) cos ( )

2 2c c c c cv t A A f t m t A A m t        (III.10) 

The first term in (III.10) represents a DSB-SC modulated signal with a carrier frequency 2 cf  

whereas the second term is proportional to the baseband signal ( )m t . 
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It is apparent that the first term in (III.10) is removed by the low-pass filter, provided that the cut-
off frequency of this filter is greater than W  but less than 2 cf W . This requirement is satisfied 

by choosing cf W . At the low-pass filter output we then obtain a signal given by 

  1
( ) cos ( )

2o c cv t A A m t   (III.11) 

The demodulated signal is therefore proportional to ( )m t  when the phase error is a constant. The 
amplitude of this demodulated signal is maximum when 0  , and it is minimum (zero) when 

2   . As long as the phase error is constant, the detector provides an undistorted version of 
the original baseband signal ( )m t . 

In practice, however, we usually find that the phase error varies randomly with time, due to random 
variations in the communication channel. The result is that at the detector output, the multiplying 
factor  cos   , also varies randomly with time, which is obviously undesirable. Therefore, 

provision must be made in the system to maintain the local oscillator in the receiver in perfect 
synchronism, in both frequency and phase, with the carrier wave used to generate the DSB-SC 
modulated signal in the transmitter. The resulting system complexity is the price that must be paid 
for suppressing the carrier wave to save transmitter power. 

Costas Receiver 

One method of obtaining a practical synchronous receiver system, suitable for demodulating DSB-
SC waves, is to use the Costas receiver. This receiver consists of two coherent detectors supplied 
with the same input signal, namely, the incoming DSB-SC wave  cos 2 ( )c cA f t m t , but with 

individual local oscillator signals that are in phase quadrature with respect to each other. 
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The frequency of the local oscillator is adjusted to be the same as the carrier frequency cf  which 

is assumed known a priori. The detector in the upper path is referred to as the in-phase coherent 
detector or I-channel, and that in the lower path is referred to as the quadrature-phase coherent 
detector or Q-channel. These two detectors are coupled together to form a negative feedback 
system designed in such a way as to maintain the local oscillator synchronous with the carrier 
wave. 

Suppose that the local oscillator signal is of the same phase as the carrier wave used to generate 
the incoming DSB-SC wave. Under these conditions, we find that the I-channel output contains 
the desired demodulated signal ( )m t , whereas the Q-channel output is zero due to the quadrature 
null effect of the Q-channel. 

Suppose next that the local oscillator phase drifts from its proper value by a small angle   radians. 
The I-channel output will remain essentially unchanged, but there will now be some signal 
appearing at the Q-channel output, which is proportional to sin( )   for small  .This Q-channel 
output will have the same polarity as the I-channel output for one direction of local oscillator phase 
drift and opposite polarity for the opposite direction of local oscillator phase drift. Thus, by 
combining the I- and Q-channel outputs in a phase discriminator (which consists of a multiplier 
followed by a low-pass filter), as shown in the last figure, a DC control signal is obtained that 
automatically corrects for local phase errors in the voltage-controlled oscillator. 

III.3.B. QUADRATURE AMPLITUDE MULTIPLEXING (QAM) 

The quadrature null effect of the coherent detector may also be put to good use in the construction 
of the so-called quadrature-carrier multiplexing or quadrature-amplitude modulation (QAM). This 
scheme enables two DSB-SC modulated waves (resulting from the application of two physically 
independent message signals) to occupy the same channel bandwidth, and yet it allows for the 
separation of the two message signals at the receiver output. It is therefore a bandwidth-
conservation scheme. 
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The transmitter part of the system involves the use of two separate product modulators that are 
supplied with two carrier waves of the same frequency but differing in phase by -90 degrees. The 
transmitted signal consists of the sum of these two product modulator outputs, as shown by 

    1 2( ) ( ) cos 2 ( )sin 2c c c cs t A m t f t A m t f t     (III.12) 

where 1( )m t  and 2( )m t  denote the two different message signals applied to the product 

modulators. Thus ( )s t  occupies a channel bandwidth of 2W  centered at carrier frequency cf , 

where W  is the message bandwidth of 1( )m t  or 2( )m t . We may view 1( )cA m t  as the in-phase 

component of the multiplexed band-pass signal and 2( )cA m t  as its quadrature component. 

At the receiver, the multiplexed signal ( )s t  is applied simultaneously to two separate coherent 
detectors that are supplied with two local carriers of the same frequency but differing in phase by 
-90 degrees. The output of the top detector is 1( )cA m t , whereas the output ofthe bottom detector 

is 2 ( )cA m t . For the system to operate satisfactorily, it is important to maintain the correct phase 

and frequency relationships between the local oscillators used in the transmitter and receiver parts 
of the system. 

To maintain this synchronization, we may send a pilot signal outside the passband of the modulated 
signal. In this method, the pilot signal typically consists of a low-power sinusoidal tone whose 
frequency and phase are related to the carrier wave ( )c t ; at the receiver, the pilot signal is extracted 
by means of a suitably tuned circuit and then translated to the correct frequency for use in the 
coherent detector. 

III.4. Filtering of Sidebands 

Consider the system 

( )v tBPFDSB( )s t

( )h t
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 

DSB ( ) ( ) ( )

( ) cos 2c c

s t m t c t

A m t f t




 (III.13) 

    DSB( )
2

c
c c

A
S f M f f M f f       (III.14) 

Given that the bandwidth of the message signal ( )m t  is equal to W , the bandwidth of DSB ( )s t  is 

equal to 2W . To reduce the bandwidth, let DSB ( )s t  be applied to a BPF with impulse response 

( )h t . In the frequency domain, the filter output is equal to 

 DSB( ) ( ) ( )V f S f H f  (III.15) 

To recover the message signal at the receiver, we start by applying the received signal ( )v t  to a 
product modulator, the other input of which is ( )c t . 

( )c t

( )y t( )v t 

 

The product modulator output is given by 

  
( ) ( ) ( )

( ) cos 2c c

y t v t c t

A v t f t



 (III.16) 

In the frequency domain we have 

    ( )
2

c
c c

A
Y f V f f V f f       (III.17) 

Substituting (III.15) into (III.17) yields 

  DSB DSB( ) ( ) ( ) ( ) ( )
2

c
c c c c

A
Y f S f f H f f S f f H f f       (III.18) 

Now, substituting (III.14) into (III.18) produces 

 

 
 
 

2
( ) ( ) ( )

( ) 2 ( )
4

2 ( )

c c

c
c c

c c

M f H f f H f f
A

Y f M f f H f f

M f f H f f

   
 

    
    

 (III.19) 
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The term in the first line in (III.19) is centered at 0f   and has a bandwidth W , the term in the 

second line is centered at 2 cf f , while the term in the third line is centered at 2 cf f  . Now, 

let’s filter ( )y t  by a LPF with bandwidth W  as shown in the system below 

( )oy tLPF( )y t
 

The filter output in the frequency domain is equal to 

  
2

( ) ( ) ( ) ( )
4
c

o c c
A

Y f M f H f f H f f     (III.20) 

To make sure that ( )m t  can be recovered from ( )oy t , we must have 

 ( ) ( ) 1,c cH f f H f f W f W        (III.21) 

This can be written more conveniently as 

 ( ) 1 ( ),c cH f f H f f W f W        (III.22) 

when 0f   we have 

 ( ) 0.5cH f   (III.23) 

This creates an odd symmetry in the function ( )H f  around the point ( , ) ( ,0.5)cf H f . 

Example III.1 

Functions in the below figure satisfy odd symmetry around ( , ) ( ,0.5)cf H f . 

f

1( )H f

1

cf

0.5

cf Wcf W

2 ( )H f

3( )H f 4( )H f
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Example III.2 

In Example III.1, let 100cf   kHz, 10W   kHz, (92k) 0.3H   and (105k) 0.8H  . Then, we 

should have 

(100k) 0.5H   

(108k) 0.7H   

(95k) 0.2H   

Note that from the analysis of bandpass systems we have 

  DSB, DSB,
1

( )* ( ) ( )* ( )( )
2

I I Q QI s t h t s t h tv t   (III.24) 

  DSB, DSB,
1

( )* ( ) ( )* ( )( )
2

I Q Q IQ s t h t s t h tv t   (III.25) 

where 

 DSB, ( ) ( )I cs t A m t  (III.26) 

 DSB, ( ) 0Qs t   (III.27) 

Substituting (III.26) and (III.27) into (III.24) yields 

 

 ( ) ( ) ( )
2

c
I I

A
v t m t h t   (III.28) 

Substituting (III.26) and (III.27) into (III.25) yields 

 ( ) ( ) ( )
2

c
Q Q

A
v t m t h t   (III.29) 
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III.4.A. SINGLE-SIDEBAND MODULATION 

In single-sideband modulation, only the upper or lower sideband is transmitted. We may generate 
such a modulated wave by using the frequency-discrimination method that consists of two stages: 

 The first stage is a product modulator, which generates a DSB-SC modulated wave. 
 The second stage is a band-pass filter, which is designed to pass one of the sidebands of 

this modulated wave and suppress the other. 

Consider the BPF that generates an LSB signal from a DSB-SC signal, shown below. 

f

1

cf cfcf Wcf W 

LSB( )H f

 

Consider the below system, where a DSB-SC signal is filtered by the bandpass filter with the 
impulse response LSB ( )h t . 

BPFDSB( )s t

LSB( )h t

LSB( )v t
 

It can be easily see that the same LSB signal generated by this filter can be generated by the LPF 
shown below. 

f

1

L ( )H f

cf cfcf Wcf W 
 

It can be easily seen that  

 

   

L ( ) rect
2

1
sgn sgn

2

c

c c

f
H f

f

f f f f

 
  

 

     

 (III.30) 

Substituting (III.30) and (III.14) into (III.15) yields 

        LSB ( ) sgn sgn
4

c
c c c c

A
V f M f f M f f f f f f              (III.31) 
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cf

sgn( )cf f

f
cf

( )cM f f

 

sgn( )cf f

f
cf

( )cM f f

 

 
   

       

LSB( )
4

sgn sgn
4

c
c c

c
c c c c

A
V f M f f M f f

A
M f f f f M f f f f

     

       

 (III.32) 

To determine LSB ( )v t , we first that 

      ( ) cos 2
2 4

c c
c c c

A A
m t f t M f f M f f       

F
 (III.33) 

Now, since 

 ˆ ( ) sgn( ) ( )m t j f M f
F

 (III.34) 

Then 

 2ˆ ( ) sgn( ) ( )cj f t
c cm t e j f f M f f   

F
 (III.35) 

 2ˆ ( ) sgn( ) ( )cj f t
c cm t e j f f M f f   

F
 (III.36) 

Using (III.33), (III.35) and (III.36) to apply the inverse Fourier transform to both sides of (III.32), 
we get 
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 

   

2 2
LSB ˆ( ) ( ) cos 2 ( )

2 4

ˆ( ) cos 2 ( )sin 2
2 2

c cj f t j f tc c
c

c c
c c

A A
v t m t f t m t e e

j

A A
m t f t m t f t

 

 

    

 
 (III.37) 

Note that 

 LSB, ( ) ( )
2

c
I

A
v t m t  (III.38) 

 LSB, ˆ( ) ( )
2
c

Q
A

v t m t   (III.39) 

The last result implies that 

 LSB, 
1

( )Qh t
t

   (III.40) 

A similar procedure leads to the following expression of a USB signal. 

    USB ˆ( ) ( ) cos 2 ( )sin 2
2 2

c c
c c

A A
v t m t f t m t f t     (III.41) 

The last result implies that 

 USB, 
1

( )Qh t
t

  (III.42) 

( )m t 

 cos 2
2

c
c

A
f t

 sin 2
2

c
c

A
f t

1

t



USB( )v t




-90⸰ Phase 
Shift


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From a practical viewpoint the most severe requirement of SSB generation arises from the 
unwanted sideband. The nearest frequency component of the unwanted sideband is separated from 
the desired sideband by twice the lowest frequency component of the message (modulating) signal. 
The implication here is that for the generation of an SSB modulated signal to be possible, the 
message spectrum must have an energy gap centered at the origin. This requirement is naturally 
satisfied by voice signals, whose energy gap is about 600 Hz wide (i.e., it extends from - 300 to + 
300 Hz). 

 

To demodulate a SSB modulated signal ( )s t , we may use a coherent detector, which multiplies 
( )s t  by a locally generated carrier and then low-pass filters the product. This method of 

demodulation assumes perfect synchronism between the oscillator in the coherent detector and the 
oscillator used to supply the carrier wave in the transmitter. 

It is inevitable that there will always be some phase error in the local oscillator output with respect 
to the carrier wave used to generate the incoming SSB modulated wave. The effect of this phase 
error is to introduce a phase distortion in the demodulated signal, where each frequency component 
of the original message signal undergoes a constant phase shift. This phase distortion is tolerable 
in voice communications, because the human ear is relatively insensitive to phase distortion. In 
the transmission of music and video signals, on the other hand, the presence of this form of 
waveform distortion is unacceptable. 

III.4.B. VESTIGIAL SIDEBAND MODULATION 

In vestigial sideband (VSB) modulation, one of the sidebands is partially suppressed and a vestige 
of the other sideband is transmitted to compensate for that suppression. A popular method is to 
first generate a DSB-SC modulated wave and then pass it through a bandpass filter. It is the special 
design of the band-pass filter that distinguishes VSB modulation from SSB modulation. Assuming 
that a vestige of the lower sideband is transmitted, the frequency response ( )H f  of the band-pass 
filter takes the form shown below. 
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This frequency response is normalized, so that at the carrier frequency we have ( ) 1 2cH f  . The 

important feature to note is that the cutoff portion of the frequency response around the carrier 
frequency exhibits odd symmetry. That is, inside the transition interval c v c vf f f f f    , 

the following two conditions are satisfied: 

 The sum of the values of the magnitude response ( )H f  at any two frequencies equally 

displaced above and below cf  is unity. 

 The phase response is linear. 

That is, ( )H f  satisfies the condition for W f W    

 ( ) ( ) 1c cH f f H f f     (III.43) 

Note also that outside the frequency band of interest (i.e., cf f W  ), the frequency response 

( )H f  may have an arbitrary specification. Accordingly, the transmission bandwidth of VSB 
modulation is 

 T vB W f   (III.44) 

The VSB modulated wave is described in the time domain as 

 
1 1

( ) ( ) cos(2 ) ( )sin(2 )
2 2c c c cs t A m t f t A m t f t    (III.45) 

 ( ) ( ) ( )Qm t m t h t    (III.46) 

where the plus sign corresponds to the transmission of a vestige of the upper sideband, and the 
minus sign corresponds to the transmission of a vestige of the lower sideband. The signal ( )m t  in 
the quadrature component of ( )s t  is obtained by passing the message signal ( )m t  through a filter 

whose frequency response ( )QH f  satisfies the following requirement for W f W    

  ( ) ( ) ( )Q c cH f j H f f H f f     (III.47) 

It is of interest to note that SSB modulation may be viewed as a special case of VSB modulation. 
Specifically, when the vestigial sideband is reduced to zero (i.e., we set 0vf  ), the modulated 

takes the limiting form of a single sideband modulated wave. Note that this case we also have 

 ˆ( ) ( )m t m t    (III.48) 

III.5. Frequency Translation 

The basic operation involved in single-sideband modulation is in fact a form of frequency 
translation, which is why single-sideband modulation is sometimes referred to as frequency 
mixing, or heterodyning. 
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The idea of frequency translation described herein may be generalized as follows. Suppose that 
we have a modulated wave 1( )s t  whose spectrum is centered on a carrier frequency 1f , and the 

requirement is to translate it upward in frequency such that its carrier frequency is changed from 

1f , to a new value 2f . This requirement may be accomplished using a mixer. The mixer consists 

of a product modulator followed by a band-pass filter. 

Up Conversion 

The translated carrier frequency 2f  is greater than the incoming carrier frequency 1f . 

Down Conversion 

The translated carrier frequency 2f  is smaller than the incoming carrier frequency 1f . 

III.6. Frequency-Division Multiplexing (FDM) 

Another important signal processing operation is multiplexing, whereby a number of independent 
signals can be combined into a composite signal suitable for transmission over a common channel. 
Voice frequencies transmitted over telephone systems, for example, range from 300 to 3100 Hz. 
To transmit a number of these signals over the same channel, the signals must be kept apart so that 
they do not interfere with each other, and thus they can be separated at the receiving end. This is 
accomplished by separating the signals either in frequency or in time. The technique of separating 
the signals in frequency is referred to as frequency-division multiplexing (FDM). 

A block diagram of an FDM system is shown below. The incoming message signals are assumed 
to be of the low-pass type, but their spectra do not necessarily have nonzero values all the way 
down to zero frequency. Following each signal input, we have shown a low-pass filter, which is 
designed to remove high-frequency components that do not contribute significantly to signal 
representation but are capable of disturbing other message signals that share the common channel. 
These low-pass filters may be omitted only if the input signals are sufficiently band limited 
initially. The filtered signals are applied to modulators that shift the frequency ranges of the signals 
so as to occupy mutually exclusive frequency intervals. The necessary carrier frequencies needed 
to perform these frequency translations are obtained from a carrier supply. 

The most widely used method of modulation in frequency-division multiplexing is single sideband 
modulation, which, in the case of voice signals, requires a bandwidth that is approximately equal 
to that of the original voice signal. In practice, each voice input is usually assigned a bandwidth of 
4 kHz. The band-pass filters following the modulators are used to restrict the band of each 
modulated wave to its prescribed range. The resulting bandpass filter outputs are next combined 
in parallel to form the input to the common channel. 
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At the receiving terminal, a bank of band-pass filters, with their inputs connected in parallel, is 
used to separate the message signals on a frequency-occupancy basis. Finally, the original message 
signals are recovered by individual demodulators. Note that the FDM system shown above 
operates in only one direction. To provide for two-way transmission, as in telephony, for example, 
we have to completely duplicate the multiplexing facilities, with the components connected in 
reverse order and with the signal waves proceeding from right to left. 

***  
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IV. ANGLE MODULATION 

In angle modulation the angle of the carrier wave is varied according to the baseband signal. In 
this method of modulation, the amplitude of the carrier wave is maintained constant. An important 
feature of angle modulation is that it can provide better discrimination against noise and 
interference than amplitude modulation. This improvement in performance is achieved at the 
expense of increased transmission bandwidth; that is, angle modulation provides us with a practical 
means of exchanging channel bandwidth for improved noise performance. Such a tradeoff is not 
possible with amplitude modulation, regardless of its form. 

Let ( )i t  denote the instantaneous angle of a modulated sinusoidal carrier, assumed to be a 

function of the message signal. We express the resulting angle-modulated wave as 

  ( ) cos ( )c is t A t   (IV.1) 

where cA  is the carrier amplitude.  

We define the instantaneous frequency of the angle-modulated signal ( )s t  as follows: 

 
1

( ) ( )
2i i

d
f t t

dt



   (IV.2) 

In the simple case of an unmodulated carrier, the angle ( )i t  is 

 ( ) 2i c ct f t      (IV.3) 

There are an infinite number of ways in which the angle ( )i t  may be varied in some manner with 

the message (baseband) signal. However, we shall consider only two commonly used methods, 
phase modulation and frequency modulation, defined as follows: 

1. Phase modulation (PM) is that form of angle modulation in which the angle ( )i t  is varied 

linearly with the message signal ( )m t , as shown by 

 ( ) 2 ( )i c pt f t k m t     (IV.4) 

The term 2 cf t  represents the angle of the unmodulated carrier; and the constant pk  represents 

the phase sensitivity of the modulator, expressed in radians per volt on the assumption that ( )m t  
is a voltage waveform. For convenience, we have assumed that the angle of the unmodulated 
carrier is zero at 0t  . The phase-modulated signal ( )s t  is thus described in the time domain by 

  ( ) cos 2 ( )c c ps t A f t k m t    (IV.5) 

2. Frequency modulation (FM) is that form of angle modulation in which the instantaneous 
frequency ( )if t  is varied linearly with the message signal ( )m t , as shown by 
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 ( ) ( )i c ff t f k m t    (IV.6) 

The term cf  represents the frequency of the unmodulated carrier, and the constant fk  represents 

the frequency sensitivity of the modulator, expressed in Hertz per volt on the assumption that ( )m t  
is a voltage waveform. 

Integrating (IV.6) with respect to time and multiplying the result by 2 , we get 

 ( ) 2 2 ( )i c ft f t k m t dt       (IV.7) 

where, for convenience, we have assumed that the angle of the unmodulated carrier wave is zero 
at 0t  . The frequency-modulated signal is therefore described in the time domain by 

  ( ) cos 2 2 ( )c c fs t A f t k m t dt      (IV.8) 

A consequence of allowing the angle ( )i t  to become dependent on the message signal ( )m t  as 

in (IV.4) or on its integral as in Equation (IV.7) is that the zero crossings of a PM signal or FM 
signal no longer have a perfect regularity in their spacing; zero crossings refer to the instants of 
time at which a waveform changes from a negative to a positive value or vice versa. This is one 
important feature that distinguishes both PM and FM signals from an AM signal. Another 
important difference is that the envelope of a PM or FM signal is constant (equal to the carrier 
amplitude), whereas the envelope of an AM signal is dependent on the message signal. 

Comparing (IV.5) with (IV.8) reveals that an FM signal may be regarded as a PM signal in which 
the modulating wave is ( )m t dt  in place of ( )m t . This means that an FM signal can be generated 

by first integrating ( )m t  and then using the result as the input to a phase modulator. Conversely, 
a PM signal can be generated by first differentiating ( )m t  and then using the result as the input to 
a frequency modulator. We may thus deduce all the properties of PM signals from those of FM 
signals and vice versa. Henceforth, we concentrate our attention on FM signals. 

IV.1. Frequency Modulation 

The FM signal ( )s t  defined by (IV.8) is a nonlinear function of the modulating signal ( )m t , which 
makes frequency modulation a nonlinear modulation process. Consequently, unlike amplitude 
modulation, the spectrum of an FM signal is not related in a simple manner to that of the 
modulating signal; rather, its analysis is much more difficult than that of an AM signal. 

 We consider the simplest case possible, namely, that of a single-tone modulation that 
produces a narrowband FM signal. 

 We next consider the more general case also involving a single-tone modulation, but this 
time the FM signal is wideband. 

Consider a sinusoidal modulating signal defined by 



Mohammad M. Banat – EE 450: Principles of Communication Systems 59 

IV: Angle Modulation 

 IV.1-Frequency Modulation 

 

 

  ( ) cos 2m mm t A f t   (IV.9) 

The instantaneous frequency of the resulting FM signal equals 

 
 

 
( ) cos 2

cos 2

i c f m m

c m

f t f k A f t

f f f t





 

  
  (IV.10) 

where 

 f mf k A    (IV.11) 

The quantity f  is called the frequency deviation, representing the maximum departure of the 

instantaneous frequency of the FM signal from the carrier frequency cf . A fundamental 

characteristic of an FM signal is that the frequency deviation f  is proportional to the amplitude 
of the modulating signal and is independent of the modulation frequency. 

The angle ( )i t  of the FM signal is obtained as 

 
 

( ) 2 ( )

2 sin 2

i i

c m
m

t f t dt

f
f t f t

f

 

 




 


  (IV.12) 

The ratio of the frequency deviation f  to the modulation frequency mf  is commonly called the 

modulation index of the FM signal. We denote it by  : 

 
m

f m

m

f

f

k A

f

 



  (IV.13) 

This leads to 

  ( ) 2 sin 2i c mt f t f t       (IV.14) 

The parameter   represents the phase deviation of the FM signal, that is, the maximum departure 

of the angle ( )i t  from the angle 2 cf t  of the unmodulated carrier; hence,   is measured in 

radians. 

The FM signal itself is given by 

   ( ) cos 2 sin 2c c ms t A f t f t      (IV.15) 
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Depending on the value of the modulation index  , we may distinguish two cases of frequency 
modulation: 

 Narrowband FM, for which   is small compared to one radian. 

 Wideband FM, for which   is large compared to one radian. 

IV.1.A. NARROWBAND FREQUENCY MODULATION 

Note that 

          ( ) cos 2 cos sin 2 sin 2 sin sin 2c c m c c ms t A f t f t A f t f t         (IV.16) 

Assuming that the modulation index is small compared to one radian, we may use the following 
approximations: 

   cos sin 2 1mf t     (IV.17) 

     sin sin 2 sin 2m mf t f t      (IV.18) 

Hence, (IV.16) simplifies to 

      ( ) cos 2 sin 2 sin 2c c c m cs t A f t A f t f t       (IV.19) 

 

Ideally, an FM signal has a constant envelope and, for the case of a sinusoidal modulating signal 
of frequency mf  the angle ( )i t  is also sinusoidal with the same frequency. 

Equation (IV.19) may be expanded as follows: 

        1
( ) cos 2 cos 2 cos 2

2c c c c m c ms t A f t A f f t f f t            (IV.20) 

This expression is somewhat similar to the corresponding one defining an AM signal. The basic 
difference between an AM signal and a narrowband FM signal is that the algebraic sign of the 
lower side frequency in the narrowband FM is reversed. Thus, a narrowband FM signal requires 
essentially the same transmission bandwidth (i.e., 2 mf ) as the AM signal. 
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IV.1.B. WIDEBAND FREQUENCY MODULATION 

In general, an FM signal produced by a sinusoidal modulating signal, is in itself nonperiodic unless 
the carrier frequency cf  is an integral multiple of the modulation frequency mf . However, we 

may simplify matters by using the complex representation of bandpass signals. Specifically, we 
assume that the carrier frequency is large enough (compared to the bandwidth of the FM signal) 
to justify rewriting this equation in the form 

 

  
 

2 sin 2

2

( ) Re

Re ( )

c m

c

j f t j f t
c

j f t

s t A e

s t e

  





 
  (IV.21) 

where 

  sin 2( ) mj f t
cs t A e     (IV.22) 

Thus, unlike the original FM signal ( )s t , the complex envelope ( )s t  is a periodic function of time 

with a fundamental frequency equal to the modulation frequency mf . We may therefore expand 

( )s t  in the form of a complex Fourier series as follows: 

 2( ) mj nf t
n

n

s t c e 



    (IV.23) 

where the complex Fourier coefficients are defined by 
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1 2

1 2
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m m
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f
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n m
f

f
j f t j nf t

m c
f

c f s t e dt

f A e dt



  





  













  (IV.24) 

Define a new variable: 

 2 mx f t   (IV.25) 

Hence, we may rewrite (IV.24) in the new form 

  sin( )

2
j x nxc

n
A

c e dx









    (IV.26) 

The integral on the right-hand side of (IV.26), except for a scaling factor, is recognized as the thn  
order Bessel function of the first kind. This function is commonly denoted ( )nJ  , as shown by 
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  sin( )1
( )

2
j x nx

nJ e dx













   (IV.27) 

Accordingly, we may reduce (IV.26) to 

 ( )n c nc A J   (IV.28) 

Using (IV.28), the complex envelope of the FM signal can be written in the form 

 2( ) ( ) mj nf t
c n

n

s t A J e 



   (IV.29) 

Therefore, the FM signal becomes 

  2( ) Re ( ) c mj f nf t
c n

n

s t A J e 






    
  
  (IV.30) 

Interchanging the order of summation and evaluation of the real part in the right-hand side of 
(IV.30), we finally get 

   ( ) ( ) cos 2c n c m
n

s t A J f nf t 



   (IV.31) 

2
2

2

( )
2

2

c
s n

n

c

A
P J

A










 

This is the desired form for the Fourier series representation of the single-tone FM signal. The 
discrete spectrum of ( )s t  is obtained by taking the Fourier transforms of both sides of (IV.31); we 
thus have 

    ( ) ( )
2

c
n c m c m

n

A
S f J f f nf f f nf  




         (IV.32) 

The Bessel function ( )nJ   has the following properties 

 ( ) ( 1) ( )n
n nJ J    (IV.33) 

For small values of the modulation index  , we have the following three approximations 

 0 ( ) 1J    (IV.34) 
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 1( )
2

J
   (IV.35) 

 ( ) 0, 2nJ n    (IV.36) 

The third property is 

 2 ( ) 1n
n

J 



  (IV.37) 

 

From the figure above, it is very important to note that 

 0 (2.4) 0J   (IV.38) 

Note that the carrier component amplitude in (IV.31) is 0 ( )cA J  . 

IV.1.C. PROPERTIES OF THE WIDEBAND FM SIGNAL 

 The spectrum of an FM signal contains a carrier component and an infinite set of side 
frequencies located symmetrically on either side of the carrier at frequency separations of 

, 2 ,3 ,m m mf f f  . In this respect, the result is unlike that which prevails in an AM system, 

since in an AM system a sinusoidal modulating signal gives rise to only one pair of side 
frequencies. 

 For the special case of   small compared with unity, only the Bessel coefficients 0 ( )J 
and 1( )J   have significant values, so that the FM signal is effectively composed of a 

carrier and a single pair of side frequencies at c mf f . This situation corresponds to the 

special case of narrowband FM that was considered earlier. 
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 The amplitude of the carrier component varies with   according to 0 ( )J  . That is, unlike 

an AM signal, the amplitude of the carrier component of an FM signal is dependent on the 
modulation index. The physical explanation for this property is that the envelope of an FM 
signal is constant, so that the average power of such a signal developed across a 1-ohm 
resistor is also constant, as shown by 

 
2

2
cA

P   (IV.39) 

When the carrier is modulated to generate the FM signal, the power in the side frequencies 
may appear only at the expense of the power originally in the carrier, thereby making the 
amplitude of the carrier component dependent on  . Note that the average power of an 
FM signal may also be determined from Equation (IV.31), obtaining 
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 
  

  




 (IV.40) 

Effect of Modulating Signal Amplitude on Spectrum 
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Effect of Modulating Signal Frequency on Spectrum 

 

 

 

IV.1.D. TRANSMISSION BANDWIDTH OF FM SIGNALS 

In theory, an FM signal contains an infinite number of side frequencies so that the bandwidth 
required to transmit such a signal is similarly infinite in extent. In practice, however, we find that 
the FM signal is effectively limited to a finite number of significant side frequencies compatible 
with a specified amount of distortion. We may therefore specify an effective bandwidth required 
for the transmission of an FM signal. Consider first the case of an FM signal generated by a single-
tone modulating wave of frequency mf . In such an FM signal, the side frequencies that are 

separated from the carrier frequency cf  by an amount greater than the frequency deviation f  

decrease rapidly toward zero, so that the bandwidth always exceeds the total frequency excursion, 
but nevertheless is limited. Specifically, for large values of the modulation index, the bandwidth 
approaches, and is only slightly greater than, the total frequency excursion 2 f . On the other hand, 
for small values of the modulation index, the spectrum of the FM signal is effectively limited to 
the carrier frequency cf  and one pair of side frequencies at c mf f  so that the bandwidth 

approaches 2 mf . We may thus define an approximate rule for the transmission bandwidth of an 

FM signal generated by a single-tone modulating signal of frequency mf  as follows: 
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T mB f f
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

  

 
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 

 (IV.41) 

This empirical relation is known as Carson's rule. 

Consider next the more general case of an arbitrary modulating signal ( )m t  with its highest 
frequency component denoted by W . The bandwidth required to transmit an FM signal generated 
by this modulating signal is estimated by using a worst-case tone modulation analysis. Specifically, 
we first determine the so-called deviation ratio D , defined as the ratio of the frequency deviation 

f , which corresponds to the maximum possible amplitude of the modulation signal ( )m t , to the 
highest modulation frequency W ; these conditions represent the extreme cases possible. 

 
max

f
D

A


  (IV.42) 

The deviation ratio D  plays the same role for non-sinusoidal modulation that the modulation index 
  plays for the case of sinusoidal modulation. Then, replacing   by D  and replacing mf  with 

W , we may use Carson's rule to obtain a value for the transmission bandwidth of the FM signal. 
From a practical viewpoint, Carson's rule somewhat underestimates the bandwidth requirement of 
an FM signal. 

IV.2. Generation of FM Signals 

There are essentially two basic methods of generating frequency-modulated signals, namely, direct 
FM and indirect FM. In the direct method the carrier frequency is directly varied in accordance 
with the input baseband signal, which is readily accomplished using a voltage-controlled oscillator. 
In the indirect method, the modulating signal is first used to produce a narrowband FM signal, and 
frequency multiplication is next used to increase the frequency deviation to the desired level. The 
indirect method is the preferred choice for frequency modulation when the stability of carrier 
frequency is of major concern as in commercial radio broadcasting. 

IV.2.A. INDIRECT FM 

 

The message (baseband) signal is first integrated and then used to phase-modulate a crystal-
controlled oscillator; the use of crystal control provides frequency stability. To minimize the 
distortion inherent in the phase modulator, the maximum phase deviation or modulation index is 
kept small, thereby resulting in a narrowband FM signal. The narrowband FM signal is next 
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multiplied in frequency by means of a frequency multiplier so as to produce the desired wide band 
FM signal. 

A frequency multiplier consists of a nonlinear device followed by a band-pass filter. 

 

The implication of the nonlinear device being memoryless is that it has no energy-storage 
elements. The input-output relation of such a device may be expressed in the general form 

 2
1 2( ) ( ) ( ) ( )n

nv t a s t a s t a s t       (IV.43) 

The input ( )s t  is an FM signal defined by 

  ( ) cos 2 2 ( )c c fs t A f t k m t dt     (IV.44) 

whose instantaneous frequency is 

 ( ) ( )i c ff t f k m t   (IV.45) 

The mid-band frequency of the band-pass filter is set equal to cnf . Moreover, the band-pass filter 

is designed to have a bandwidth equal to n  times the transmission bandwidth of ( )s t . After band-
pass filtering of the nonlinear device's output ( )v t , we have a new FM signal defined by 

  ( ) cos 2 2 ( )c c fs t A nf t nk m t dt      (IV.46) 

whose instantaneous frequency is 

 ( ) ( )i c ff t nf nk m t    (IV.47) 

Note that 

 n    (IV.48) 

IV.2.B. DIRECT FM 

Hartley Oscillator 

The circuit below shows a voltage-controlled Hartley oscillator. The capacitance ( )C t  is linearly 
proportional to the message signal ( )m t . This capacitance is most often called a varactor or a 
varicap. 

For single-tone modulation, we can assume that ( )C t  and ( )m t  are related as follows: 
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  0( ) cos 2 mC t C C f t    (IV.49) 

where 0C  is the value of the capacitance when ( )m t  is not present or equal to zero, and C  is a 

constant that is proportional to mA . 

1L 2L

( )C t  

The oscillator instantaneous frequency is given by: 

 
 1 2

1
( )

2 ( )
if t

L L C t



 (IV.50) 

This can be rewritten in the form 

 

 
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

 (IV.51) 

where 

 
 0

1 2 0

1

2
f

L L C



 (IV.52) 

 

where 0f  is the free-running frequency of the oscillator. When 0C C  , we can use the 

approximation 

 

1
1 , for 1

21

1 1
2

x
x

x
x

x

  

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 (IV.53) 

Therefore, 
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  0
0

( ) 1 cos 2
2i m

C
f t f f t

C


 
  

 
 (IV.54) 

Let’s compare this formula with the general equation for the FM instantaneous frequency, while 
replacing 0f  with cf . 

 ( ) ( )i c ff t f k m t   (IV.55) 

The result is 

 0
02f

C
k f

C


   (IV.56) 

IV.3. FM Demodulation 

The objective is to produce a transfer characteristic that is the inverse of that of the frequency 
modulator, which can be realized directly or indirectly. Here we describe a direct method of 
frequency demodulation involving the use of a popular device known as a frequency discriminator, 
whose instantaneous output amplitude is directly proportional to the instantaneous frequency of 
the input FM signal. 

Frequency Discriminator 

Basically, the frequency discriminator consists of a slope circuit followed by an envelope detector. 
An ideal slope circuit is characterized by a frequency response that is purely imaginary, varying 
linearly with frequency inside a prescribed frequency interval. 

 

Consider the frequency response 
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 (IV.57) 

Note that 

  1 12 ( ), 0cH f f H f f    (IV.58) 

Therefore, 

 1
4 ,

( ) 2 2 2

0, elsewhere

T T TB B B
j a f f

H f
         



  (IV.59) 

The incoming FM signal is given by: 

 ( ) cos 2 2 ( )c c fs t A f t k m t dt      (IV.60) 

Given that the carrier frequency is high compared to the transmission bandwidth of the FM signal, 
the complex envelope of ( )s t  is 

 ( ) exp 2 ( )c fs t A j k m t dt     (IV.61) 

Let 1( )s t  denote the complex envelope of the response of the slope circuit due to ( )s t . Then, 

 

1 1
1

( ) ( ) ( )
2

2 ( ),
2 2 2

0, elsewhere

T T T

S f S f H f

B B B
j a f S f f



         


  

  (IV.62) 

Hence, 

 1
( )

( ) ( )T
ds t

s t a j B s t
dt

    

   (IV.63) 

Substituting for ( )s t  in (IV.63), 
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 1
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( ) 1 ( ) exp 2 ( )f

T c f
T

k
s t j B aA m t j k m t dt

B
 
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  (IV.64) 

The desired response of the slope circuit is therefore 

 1

2
( ) 1 ( ) cos 2 2 ( )

2
f

T c c f
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k
s t B aA m t f t k m t dt
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  
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  (IV.65) 

The signal 1( )s t  is a hybrid-modulated signal in which both amplitude and frequency of the carrier 

wave vary with the message signal ( )m t . However, provided that we choose 

 
2

( ) 1f

T

k
m t

B
  (IV.66) 

then we may use an envelope detector to recover the amplitude variations and thus, except for a 
bias term, obtain the original message signal. The resulting envelope-detector output is therefore 

 1

2
( ) 1 ( )f

T c
T

k
s t B aA m t

B


 
  

 
  (IV.67) 

The bias term T cB aA  in the right-hand side of Equation (IV.67) is proportional to the slope a of 

the transfer function of the slope circuit. This suggests that the bias may be removed by subtracting 
from the envelope-detector output 1( )s t  the output of a second envelope detector preceded by the 

complementary slope circuit with a frequency response 2 ( )H f  as described above. 

The two slope circuits are related by 

 2 1( ) ( )H f H f    (IV.68) 

 

 2

2
( ) 1 ( )f

T c
T

k
s t B aA m t

B


 
  

 
  (IV.69) 

The difference between the two envelopes in Equations (IV.67) and (IV.69) is 
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1 2( ) ( ) ( )

4 ( )
o

f c

s t s t s t

k aA m t
 



 
 (IV.70) 

which is a scaled version of the original message signal ( )m t  and free from bias. 

 

 

*** 
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V. RANDOM PROCESSES 

A signal is said to be deterministic if there is no uncertainty about its time-dependent behavior at 
any instant of time. However, in many real-world problems the use of a deterministic signal model 
is inappropriate because the physical phenomenon of interest involves too many unknown factors. 
Nevertheless, it may be possible to consider a signal model described in probabilistic terms in that 
we speak of the probability of a future value lying between two specified limits. In such a case, 
the signal is said to be stochastic or random. 

Consider, for example, a radio communication system. The received signal in such a system 
usually consists of an information-bearing signal component, a random interference component, 
and random channel noise. The information-bearing signal component may represent, for example, 
a voice signal that, typically, consists of randomly spaced bursts of energy of random duration. 
The interference component may represent signals produced by other communication systems 
operating in the vicinity of the radio receiver. A major source of channel noise is thermal noise, 
which is caused by the random motion of the electrons in conductors and devices at the front end 
of the receiver. We thus find that the received signal is random in nature. 

Although it is not possible to predict the exact value of the signal in advance, it is possible to 
describe the signal in terms of statistical parameters such as the mean value, the average power 
and the power spectral density. 

V.1. Mathematical Definition of a Random Process 

Random processes have two properties: 

 First, they are functions of time. 
 Second, they are random in the sense that before conducting an experiment, it is not 

possible to exactly define the waveforms that will be observed in the future. 

Elements of the sample space are sample functions. 

 For a random variable, the outcome of a random experiment is mapped into a number. 
 For a random process, the outcome of a random experiment is mapped into a waveform 

that is a function of time. 

Consider a random process ( )X t  that is initiated at t   . Let 1 2( ), ( ), , ( )kX t X t X t  denote 

the random variables obtained by observing the random process ( )X t  at times 1 2, , , kt t t , 

respectively. The joint distribution function of this set of random variables is 

1 2( ), ( ), , ( ) 1 2( , , , )
kX t X t X t kF x x x  . Suppose next that we shift all the observation times by a fixed 

amount  , thereby obtaining a new set of random variables 1 2( ), ( ), , ( )kX t X t X t     . 
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The random process ( )X t  is said to be stationary in the strict sense or strictly stationary if the 
following condition holds: 

 
1 2 1 2( ), ( ), , ( ) 1 2 ( ), ( ), , ( ) 1 2( , , , ) ( , , , )

k kX t X t X t k X t X t X t kF x x x F x x x          (V.1) 

for all time shifts  , all k , and all possible choices of observation times 1 2, , , kt t t . 

In other words, a random process ( )X t , initiated at time t   , is strictly stationary if the joint 
distribution of any set of random variables obtained by observing the random process ( )X t  is 
invariant with respect to the location of the origin 0t  . 

Note that the finite-dimensional distributions in (V.1) depend on the relative time separation 
between random variables but not on their absolute time. That is, the random process has the same 
probabilistic behavior through all time. 

Similarly, we may say that two random processes ( )X t  and ( )Y t  are jointly strictly stationary if 
the joint finite-dimensional distributions of the two sets of random variables 

1 2( ), ( ), , ( )kX t X t X t  and 1 2( ), ( ), , ( )lY X X    are invariant with respect to the origin 0t   

for all k  and l   and all choices of observation times 1 2, , , kt t t  and 1 2, , , l   . 

First Order Stationarity 

Let 1k  , then from (V.1): 

 
1 1( ) 1 ( ) 1( ) ( )X t X tF x F x    (V.2) 
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That is, the first-order distribution function of a stationary random process is independent of time. 

Second Order Stationarity 

Let 2k   and 1t   , then from (V.1): 

 
1 2 2 1( ), ( ) 1 2 (0), ( ) 1 2 1 2( , ) ( , ), ,X t X t X X t tF x x F x x t t    (V.3) 

That is, the second-order distribution function of a stationary random process depends only on the 
time difference between the observation times and not on the particular times at which the random 
process is observed. 

V.2. Wide-Sense Cyclostationary Processes 

A continuous-time random signal ( )X t  is wide-sense cyclostationary (WSC) with period T  if 

 ( ) ( )X Xt T t    (V.4) 

and 

 ( , ) ( , )X XR t T R t    (V.5) 

 ( , ) E ( ) ( )XR t X t X t    = autocorrelation function 

Note that periodicity is in the time ( t ) variable. Note also that, in this case, the statistical power, 
is given by 

 
2( ) E ( )

( ,0)

X

X

P t X t

R t

 
 


 (V.6) 

This quantity is also periodic with period T , so that it is reasonable to define the average power 
as: 

 0

0

1
( )

1
( ,0)

T

X X

T

X

P P t dt
T

R t dt
T








 (V.7) 

The average autocorrelation function ( )XR  of ( )X t  is evaluated by averaging ( , )XR t  over a 

period (with respect to the variable t ), that is: 

 
0

1
( ) ( , )

T

X XR R t dt
T

    (V.8) 
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Then the average power spectral density (PSD) is computed as 

 2( ) ( ) j f
X XS f R e d  






   (V.9) 

V.3. Mean, Correlation, and Covariance Functions 

Consider a strictly stationary random process ( )X t . The mean of this process is given by: 

 

 

( )

( ) E ( )

( )

X

X t

t X t

xf x dx








 
  (V.10) 

For a strictly stationary random process, ( ) ( )X tf x  is independent of time. Consequently, the mean 

of a strictly stationary process is a constant, as shown by 

 ( ) , for all X Xt t    (V.11) 

The autocorrelation function of ( )X t  is given by: 

 

 

1 2

1 2 1 2

1 2 ( ), ( ) 1 2 1 2

( , ) E ( ) ( )

( , )

X

X t X t

R t t X t X t

x x f x x dx dx
 

 



  
  (V.12) 

For a strictly stationary random process, 
1 2( ), ( ) 1 2( , )X t X tf x x  depends only on the difference 

between the observation times 1t  and 2t . This, in turn, implies that the autocorrelation function 

of a strictly stationary process depends only on the time difference 2 1t t . 

 1 2 2 1 1 2( , ) ( ), for all  and X XR t t R t t t t    (V.13) 

The auto covariance function of a strictly stationary process ( )X t  is written as 

 
  1 2 1 2

2
2 1

( , ) E ( ) ( )

( )

X X X

X X

C t t X t X t

R t t

 



    

  
  (V.14) 

This implies that the auto covariance function of a strictly stationary process depends only on the 
time difference 2 1t t . 
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This equation also shows that if we know the mean and autocorrelation function of the process, 
we can uniquely determine the auto covariance function. The mean and autocorrelation function 
are therefore sufficient to describe the first two moments of the process. 

1. The mean and autocorrelation function only provide a partial description of the distribution 
of a random process ( )X t . 

2. The conditions of Equations (V.11) and (V.13), involving the mean and autocorrelation 
function, respectively, are not sufficient to guarantee that the random process ( )X t  is 
strictly stationary. 

The class of random processes that satisfy (V.11) and (V.13) are known as wide-sense stationary. 

Example 

Let  ( ) cos 2 cX t A f t  . Let   be uniformly distributed over  ,  . 

 ( ) E ( )X t X t   

1
( ) ,

2
f   

    

 

 

1
( ) ( )

2

cos 2
2

sin 2
2

X

c

c

t X t d

A
f t d

A
f t











 


  


 










 

 



  

( ) 0X t   

 

   

     

2

2 2 2

( , ) E ( ) ( )

1
( ) ( )

2

cos 2 cos 2 2
2

cos 2 cos 2 2 2 2 cos 2
4 4 2

X

c c c

c c c c

R t t X t X t

X t X t d

A
f t f t f d

A A A
f d f t f d f







 

 

 

 


      


         
 





 

  

 

   

    





 
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 ( ) cos 2 cX t A f t   is WSS. 

 

Example 

Let  ( ) cos 2 cX t A f t  . Let   be uniformly distributed over  0, . 

 ( ) E ( )X t X t   

1
( ) , 0f   

     

 

 

0

0

0

1
( ) ( )

cos 2

sin 2

X

c

c

t X t d

A
f t d

A
f t







 


  


 




 

 



  

 2
( ) sin 2X c

A
t f t 


   

 ( ) cos 2 cX t A f t   is not WSS. 

 

Example 

Let  ( ) cos 2 cX t A f t  . Let A  be uniformly distributed over  ,m mA A . 

 ( ) E ( )X t X t   

1
( ) ,

2A m
m

f a a A
A

   



Mohammad M. Banat – EE 450: Principles of Communication Systems 79 

V: Random Processes 

 V.3-Mean, Correlation, and Covariance 
Functions 

 

 

 

 

 
2

1
( ) ( )

2

1
cos 2

2

1
cos 2

2

cos 2
4

m

m

m

m

m

m

m

X
m A

A

c
m A

A

c
m A

A

c
m A

t X t da
A

a f t da
A

f t ada
A

a
f t

A



 

 

 











 

 

 






 

( ) 0X t   

 

   

   

   

2

2

2

( , ) E ( ) ( )

1
( ) ( )

2

1
cos 2 cos 2 2

2

1
cos 2 cos 2 2

2

cos 2 cos 2 2
3

m

m

m

m

m

m

X

A

m A

A

c c c
m A

A

c c c
m A

m
c c c

R t t X t X t

X t X t da
A

a f t f t f da
A

f t f t f a da
A

A
f t f t f

 



     

     

     







  

 

   

   

   







 

 ( ) cos 2 cX t A f t   is not WSS. 

 

V.3.A. PROPERTIES OF THE AUTOCORRELATION FUNCTION 

For a stationary process, 

  ( ) E ( ) ( )XR X t X t     (V.15) 

Mean-Square Value (Total Power) 

 2(0) E ( )XR X t      (V.16) 
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Symmetry 

 ( ) ( )X XR R     (V.17) 

Maximum Correlation 

 ( ) (0)X XR R    (V.18) 

Exercise: 

Is 2 1   a possible autocorrelation function? NO. 

V.3.B. CROSS-CORRELATION FUNCTIONS 

  ( , ) E ( ) ( )XYR t u X t Y u   (V.19) 

  ( , ) E ( ) ( )YXR t u Y t X u   (V.20) 

Correlation Matrix 

 
( , ) ( , )

( , )
( , ) ( , )

X XY

YX Y

R t u R t u
R t u

R t u R t u

 
  
 

  (V.21) 

If the random processes ( )X t  and ( )Y t  are each stationary and, in addition, they are jointly 
stationary, then the correlation matrix can be written as 

 
( ) ( )

( )
( ) ( )

X XY

YX Y

R R
R

R R

 


 
 

  
 

  (V.22) 

The cross-correlation function is not generally an even function of   as was true for the 
autocorrelation function, nor does it have a maximum at the origin. However, it does obey a certain 
symmetry relationship as follows 

 ( ) ( )XY YXR R     (V.23) 

V.4. Ergodic Processes 

The expectations or ensemble averages of a random process ( )X t  are averages “across the 

process”. For example, the mean of a random process ( )X t  at some fixed time kt  is the 

expectation of the random variable ( )kX t  that describes all possible values of the sample 

functions of the process observed at time kt t . 

Naturally, we may also define long-term sample averages, or time averages that are averages 
“along the process”.  
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We are therefore interested in relating ensemble averages to time averages, for time averages 
represent a practical means available to us for the estimation of ensemble averages of a random 
process. The key question, of course, is: When can we substitute time averages for ensemble 
averages? 

Time Average 

Consider the sample function ( )x t  of a stationary process ( )X t , with the observation interval 
defined as T t T   . The DC value of ( )x t  is defined by the time average 

 
1

( ) ( )
2

T

x
T

T x t dt
T




    (V.24) 

Clearly, the time average ( )x T  is a random variable, as its value depends on the observation 

interval and which particular sample function of the random process ( )X t  is picked. Since the 

process ( )X t  is assumed to be stationary, the mean of the time average ( )x T  is given by (after 

interchanging the operation of expectation and integration): 

 

   1
E ( ) E ( )

2

1

2

T

x
T

T

X
T

X

T x t dt
T

dt
T



















   (V.25) 

The time average ( )x T  represents an unbiased estimate of the ensemble-averaged mean X . 

The process ( )X t  is ergodic in the mean if two conditions are satisfied: 

 The time average ( )x T  approaches X  as T  approaches infinity; 

 lim ( )x X
T

t 


   (V.26) 

 The variance of ( )x T  approaches zero as T  approaches infinity; 

  lim var ( ) 0x
T

T


   (V.27) 

Time-Averaged Autocorrelation 

 
1

( , ) ( ) ( )
2

T

x
T

R T x t x t dt
T

 


    (V.28) 

This is a random variable. 
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The process ( )X t  is ergodic in the autocorrelation function if 

 lim ( , ) ( )x X
T

R T R 


   (V.29) 

  lim var ( , ) 0x
T

R T


   (V.30) 

V.5. Power Spectral Density (PSD) 

 
2

( ) cos 2
2X c

A
R f    

 
2

2( ) cos 2
2

j f
X c

A
S f f e d   






   

 
2

2( ) cos 2
2

j ft
X c

A
S f f t e dt






   

 
2

( ) cos 2
2X c

A
R f    

Einstein-Wiener-Khintchine Relations 

 2( ) ( ) j f
X XS f R e d  






    (Fourier Transform of the autocorrelation) (V.31) 

 2( ) ( ) j f
X XR S f e df 





    (Inverse Fourier Transform of the PSD) (V.32) 

V.5.A. PROPERTIES OF THE PSD 

 (0) ( )X XS R d 




    (V.33) 

 

2E ( ) (0)

( )

X

X

X t R

S f df




   

 
  (V.34) 

 ( ) 0XS f    (V.35) 
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 ( ) ( )X XS f S f    (V.36) 

Example V.1 

Sinusoidal Wave with Random Phase 

Consider the random process  ( ) cos 2 cX t A f t  , where   is a uniformly distributed 

random variable over the interval  ,  . Then, 

 
2

( ) cos 2
2X c

A
R f    

   
2

( )
4X c c

A
S f f f f f        

Example V.2 

Mixing of a Random Process with a Sinusoidal Process 

Let ( )X t  be a stationary random process. Consider the random process 

 ( ) ( ) cos 2 cY t X t f t  , where   is a uniformly distributed random variable over the interval 

 0,2 . Then, 

 1
( ) ( ) cos 2

2Y X cR R f     

   1
( )

4Y X c X cS f S f f S f f       

V.5.B. CROSS POWER SPECTRAL DENSITIES 

 2( ) ( ) j f
XY XYS f R e d  






    (V.37) 

 2( ) ( ) j f
YX YXS f R e d  






    (V.38) 

 *( ) ( ) ( ) ( ) ( )XY YX XY YX YXR R S f S f S f         (V.39) 

Let ( ) ( ) ( )Z t X t Y t  . If ( )X t  and ( )Y t  are uncorrelated, then 

 ( ) ( ) ( )Z X YS f S f S f    (V.40) 
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V.6. Gaussian Random Processes 

Let us suppose that we observe a random process ( )X t  for an interval that starts at time 0t   and 
lasts until t T . Suppose also that we weight the random process ( )X t  by some function ( )g t  
and then integrate the product ( ) ( )g t X t  over this observation interval, thereby obtaining a random 
variable Y  defined by 

 
0

( ) ( )
T

Y g t X t dt    (V.41) 

( )X t  is a Gaussian random process if Y  is Gaussian with a finite mean square value. The PDF of 
Y  can be written in the form 

 

  2

22

2

1
( )

2

Y

Y

y

Y

Y

f y e









   (V.42) 

V.6.A. CENTRAL LIMIT THEOREM 

The central limit theorem provides the mathematical justification for using a Gaussian process as 
a model for a large number of different physical phenomena in which the observed random 
variable, at a particular instant of time, is the result of a large number of individual random events. 

Let 1( ), , ( )NX t X t  be a set of random variables that satisfies the following requirements: 

1.   1
( )

N
n n

X t 
 are statistically independent. 

2.   1
( )

N
n n

X t 
 are identically distributed, i.e., they all have the same PDF with the same mean 

X  and the same variance 2
X . 

Let 
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Then, 
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Let 
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The central limit theorem states that the probability distribution of NV  approaches a normalized 

Gaussian distribution (0,1)N  in the limit as the number of random variables N  approaches 
infinity. 

V.6.B. PROPERTIES OF THE GAUSSIAN PROCESS 

 If a Gaussian process ( )X t  is applied to a stable linear filter, then the random process ( )Y t  
developed at the output of the filter is also Gaussian. 

 Consider the set of random variables or samples 1( ), , ( )nX t X t  obtained by observing a 

random process ( )X t  at times 1, , nt t . If the process ( )X t  is Gaussian, then this set of 

random variables is jointly Gaussian for any n , with their n -fold joint probability density 
function being completely determined by specifying the set of means ( )

iX t  and the set 

of covariance functions ( , )X k lC t t  for , , 1, ,i k l n  . The joint PDF is given by: 
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where 
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  det     (V.52) 

 If a Gaussian process is stationary, then the process is also strictly stationary. 
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 If the random variables 1( ), , ( )nX t X t , obtained by sampling a Gaussian process ( )X t  

at times 1, , nt t , are uncorrelated, that is, 

     ( ) ( )E ( ) ( ) 0
k ik X t i X tX t X t    

 
  (V.53) 

for i k , then these random variables are statistically independent. 

V.7. Transmission of a Random Process Through a Linear Time-Invariant Filter 

Consider an LTI system with impulse response ( )h t . Let the system input be a stationary random 
process ( )X t . The output process is given by 

 

( ) ( ) ( )

( ) ( )

Y t X t h t

h X t d  




 

 
  (V.54) 

 

 

 

( ) E ( )

E ( ) ( )

( ) E ( )

( ) ( )

( ) ( )

Y

X

X

t Y t

h X t d

h X t d

h t d

t h t



  

  

   
















 
  

  

 

 

 







  (V.55) 

When the input random process ( )X t  is stationary, the mean ( )X t  is a constant X , so that 
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If ( )X t  is stationary, 
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