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SYLLABUS

Course Catalog

3 Credit hours (3 h lectures). Probability principles and set theory. Random variables. Operations on random variables.
Various distribution functions. Random processes: temporal and spectral characterization. Response of linear time-
invariant systems to random inputs.

Textbook

Peyton Z. Peebles (2001). Probability, Random Variables and Random Signal Principles, 4% ed. McGraw Hill.

References

1. Roy D. Yates and David J. Goodman (2004). Probability and stochastic processes. 2" ed. Wiley.

2. Leon-Garcia (2008). Probability and Random Processes for Electrical Engineering. 3™ ed. Prentice Hall.

3. Geoffrey Grimmett and David Stirzaker (2001). Probability and Random Processes. 3" ed. Oxford
University Press.

Instructor
Name: Dr. Mohammad M. Banat
Email Address: banat@just.edu.jo

Prerequisites

Prerequisites by topic Calculus, Signal Analysis
Prerequisites by course Math 102, EE 260
Prerequisite for EE 450

Topics Covered

Week Topics Chepters in Text
1-2 Introduction to Probability Theory 2
3-6 Random Variables and Distribution and Density Functions 3
7 Operations on a Single Random Variables 4
8-9 Multiple Random Variables 5
10-12 | Operations on Multiple Random Variables 6
12-14 | Random Processes 7
15-16 | Spectral Analysis and Filtering of Random Processes 8
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Objectives and Qutcomes

Objectives QOutcomes
1. Know and apply the basic 1.1. Recognize the role of probability in science and engineering [a]
probability principles [a] 1.2. Understand basics of set theory [a]
1.3. Understand the axioms of probability [a]
2. Know and apply the basic 2.1. Understand the concepts of discrete and continuous single and
principles concerning single multiple random variables [a]
and multiple Random 2.2. Understand the concepts of distribution and density functions [a]
Variables [a] 2.3. Understand and apply the concepts of moments and moment
generating functions [a]
2.4. Be able to determine probabilities using distribution and density
functions [a]
2.5. Be able to perform random variable transformations [a]
3. Know and apply the basic 3.1. Understand the concept of a random process [a]
time/frequency domain 3.2. Be able to characterize random processes in the time domain [a]
principles concerning Random 3.3. Be able to characterize random processes in the frequency domain
Processes [a] [a]
4. Know and apply the basic 4.1. Be able to use time domain input/output relationships of linear
time/frequency domain input- time invariant systems with random inputs [a]
output relationships 4.2. Be able to use frequency domain input/output relationships of
concerning  Linear time linear time invariant systems with random inputs [a]

invariant systems with random
inputs [a]

Contribution of Course to Meeting the Professional Component

The course contributes to building the fundamental basic concepts and applications of probability and

random processes in Electrical Engineering.

RELATIONSHIP TO PROGRAM OUTCOMES (%)

1 2 3 4 5 6 7
100
Evaluation
Assessment Tool Expected Due Date Weight
Mid-Term Exam Sat. 8 August 2020 25%
Class Work 25%
Final Exam 50%

0-Objectives and Outcomes
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I. INTRODUCTION

L1. Set Definitions

Definition I-1

A set is a collection of objects (defined as elements).

Example 1.1

A set can consist of integer numbers from 1 to 10.

A set can consist of small alphabet letters from a to z.

Set Elements
When object a is an element of 4, we write ae 4.

When object a is not an element of 4, we write a ¢ 4.

Tabular Method
A={x,y,z,w,u}

Rule Method
A = {integers from 1 to 5}
B={x|x>0}

This methods is useful when the set size is large.

Countable Sets

A set is said to be countable if all its elements can be put in one-to-one correspondence with the
natural numbers, which are the integers 1, 2, 3, etc.

Example 1.2

The set C = {0,1/ 4,1/2,- } is countable; because we can create a one-to-one correspondence with
the natural numbers.

If a set is not countable it is called uncountable.

Example 1.3

The set D ={x|0<x <10} is uncountable; because we cannot create a one-to-one correspondence
with the natural numbers.

Empty Set
A set is said to be empty if it has no elements. The empty set is often called the null set. Empty set
is often denoted by the symbol ¢ .

I.1-Set Definitions
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Example 1.4

The set E = {real integers whose squares are negative} is empty; because squares of real integers
cannot be negative. In this case E = ¢ .

Finite Sets

A finite set is one that is either empty or has elements that can be counted, with the counting
process terminating.

Example 1.5

Set C and D in the above examples are infinite.
Set E is empty, and is therefore finite.
The set of numbers on the six faces of a fair die is finite.

The set of student names in this EE 360 class is finite.

Subsets

A set A is said to be a subset of another set, B, if all elements of 4 are also elements of B, in
which case we write 4 c B . With this definition, it is possible that the two sets are equal (i.e., they
have all the same elements), in which case 4 — B and at the same time B < 4. If on the other

hand, 4 is a subset of B and there are some elements of B that are not in 4, then we say that 4
is a proper subset of B and we write 4 c B .

Example 1.6

Let F ={Numbers on the six faces of a fair die} .
Let G= {2,4,6} :
Let H = {Positive integers that are smaller than 7} .

Then we have:
GcF. HcF.FcH.H=F.
We can also write:

FoG. FoH. HoF. F=H.

Exercise 1.1

Provide aset X ;suchthat X c F and X o G.

I.1-Set Definitions
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Universal Set

The universal set (or sample space) S is the set of all objects under consideration in a given
problem.

Example 1.7

Set Fin Example 1.6 is the universal set of the experiment of rolling a die.

Complement
The complement of a set 4, written A, is the set of all elements in S that are not in 4.

Example 1.8

Set G in Example 1.6 has the complement G = {1,3, 5} in the experiment of rolling a die.

Difference Set

For two sets 4 and B that satisfy 4 < B, the difference set, written B — 4, is the set of elements
in B thatarenotin 4.

Example 1.9

Let 4 consist of integer numbers from 1 to 10.

Let B consist of integer numbers from 7 to 15.
A-B= {1,2,3,4,5,6} and B—A4= {1 1,12,13,14,15} .

Note that A—B#B—A.

Union of Sets

For any two sets 4 and B the union of the two sets, 4 U B, is the set of all elements that are
contained in either 4 or B. Union is sometimes expressed as A+ B .

Example 1.10

The union of set A={redblue,orange} and set B={whiteblue} is the set
C = AU B ={red,blue,orange,white} = { white,blue,red,orange} .

Intersection of Sets

For any two sets 4 and B the intersection of the two sets, A" B , is the set of all elements that
are contained in both 4 and B. Intersection is sometimes expressed as AB .

Example .11

The intersection of set A={redblue,orange} and set B={white,blue} is the set

D= AN B ={blue}.

I.1-Set Definitions
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Mutually Exclusive Sets

Two sets A and B are said to be mutually exclusive, or disjoint, if and only if they have no
common elements, in which case 4B =4¢.

Example 1.12

Sets A={1,2,3} and B ={x,y} are mutually exclusive,and 4N B=¢.

Sets A ={red,bluc,orange} and B ={whiteblue} are not mutually exclusive; because
AN B ={blue} = ¢.

Exhaustive Sets
A collection of sets 4, 4,,---, A, are said to be exhaustive if each element in the universal set is
contained in at least one of the sets in the collection. In such acase 4,u 4, U---U 4, =S.

Example .13

Let S ={x=integer, 0<x <10}, 4, ={1,23,6}, 4, ={4,56,7,8} and 4;=1{4,89}. Sets 4,

A, and A5 are exhaustive, but they not mutually exclusive.

Example 1.14

Let S ={x=integer, 0<x <10}, 4, ={1,2,3,6}, 4, ={4,5,7,8} and 43 ={9}. Sets 4,, 4, and

A5 are exhaustive and mutually exclusive.

Venn Diagrams

S AUB

Figure I.1: Venn Diagram

Exercise 1.2
Show that:
pcAc S, Ac A If Ac B and Bc C then A C
Generally, A-B#B- 4 If A~-B=B—-4,then A=B

1. 1-5€et perinitions
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AU A=A, AnA=A4 AUB=BUA, AnB=BnNn A
Av(BuC)=(AuB)uC=4uBucC AN(BNC)=(AnB)NnC=4AnBnC
AN(BuC)=(AnB)u(AnC) AU(BNC)=(AuB)n(4uC)
ANB=A4
Ac B=
AUB=B pcAc S
SNA=4 Sud=S§
AuAd=S
(4)=4 ANA=¢
S=¢,¢=5
DeMorgan’s first law: AUB=A4NB DeMorgan’s second law: ANnB=A4AUB

L2. Experiments, Sample Spaces, and Events

A deterministic signal is one that may be represented by parameter values, such as a sinusoid,
which may be perfectly reconstructed given an amplitude, frequency, and phase. Stochastic
(random) signals, such as noise, do not have this property.

The theory of probability provides tools to model and analyze phenomena that occur in many
diverse fields, such as communications, signal processing, control, and computers. Perhaps the
major reason for studying probability and random processes is to be able to model complex
systems and phenomena.

Definition 1-2

An experiment is a (quite often hypothetical) procedure we perform that produces some result.

Definition I-3

An outcome is a possible result of an experiment. If a fair coin is tossed five times, an outcome
could be HHTHT .

Definition 1-4

The sample space is the collection or set of all distinct (collectively exhaustive and mutually
exclusive) outcomes of an experiment. The letter S is used to designate the sample space, which
is the universal set of outcomes of an experiment. A sample space is called discrete if it is a finite
or a countably infinite set. It is called continuous or a continuum otherwise.

I1.2-Experiments, Sample Spaces, and Events
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Example .15

Consider flipping a fair coin once, where fair means that the coin is not biased in weight to a
particular side. There are two possible outcomes, namely, a head or a tail. Thus, the sample space
S consists of two outcomes, H to indicate that the outcome of the coin toss was a head and 7' to

indicate that the outcome of the coin toss was a tail. We may write S = {H , T } .

Example 1.16

A cubical die with numbered faces is rolled and the result observed. The sample space consists of
six possible outcomes: 1, 2, --- , 6. Note that these numbers represent the six faces of the cubical

die. We may write S ={1,2,3,4,5,6}.

Definition I-5

An event is some set of outcomes of an experiment. For example, the event C in the experiment
of tossing a fair coin five time might be C = {outcomes with an even number of heads} . All events

of an experiment are subsets of the sample space.

Example 1.17

Consider the experiment of rolling two dice and observing the results. The sample space consists
of the 36 outcomes: (1, 1), (1,2), ---, (6,6); the first component in the ordered pair indicates the

number on the first die, and the second component indicates the number on the second die. Several
interesting events can be defined from this experiment, such as

A ={sum of the two numbers =4}, B ={the two numbers are identical},

C ={the first number is larger than the second} .

Imagine that we conduct two experiments, with each consisting of rolling a single die. The sample
spaces (S; and S,) for each of the two experiments are identical, namely, the same as Example

[.16. We may now consider the sample space, S , of the original experiment to be the combination
of the sample spaces, S, and §,, which consists of all possible combinations of the elements of

both S, and §,. This is an example of a combined sample space.

Example .18

Let us flip a coin until a tails occurs. The experiment is then terminated. The sample space consists
of a collection of sequences of coin tosses. Label these outcomes as &,, n =1,2,3,---. The final

toss in any particular sequence is a tail and terminates the sequence. All the preceding tosses prior
to the occurrence of the tail must be heads.

The possible outcomes that may occur are

& =(7), &=(H, T), &=(H,H, T), -

Lio LAACI I Ui UL STy U v Sl
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Note that in this case, n can extend to infinity. This is another example of a combined sample
space resulting from conducting independent but identical experiments. In this example, the
sample space is countably infinite, while in the previous examples sample spaces were finite.

Example .19

Consider a random number generator that selects a number in an arbitrary manner from the semi-
closed interval [0, 1). The sample space consists of all real numbers x for which 0 < x <1. This
is an example of an experiment with a continuous sample space. We can define events on a
continuous space as well, such as

1 1 1 1
C={x:— A={x<—= B=1<[x-=|<—
2 2 2| 4
N —
one point: finite upper-bounded interval: infinite upper- and lower-bounded interval: infinite

Other examples of experiments with continuous sample spaces include the measurement of the
voltage of thermal noise in a resistor and the measurement of the (x, y,z) position of an oxygen

molecule in the atmosphere.

A particular experiment can often be represented by more than one sample space. The choice of a
particular sample space depends upon the questions that are to be answered concerning the
experiment.

Example 1.20

Consider the experiment of rolling two dice and observing the results.

e Ifthe dice are distinguishable, and we are interested in what numbers show on the upper faces
of the dice, then the sample space consist of the 36 ordered pairs {(1, 1),(1,2),---,(6, 6)} .

e If the dice are indistinguishable, and we are interested in what numbers show on the upper
faces of the dice, then the sample space consist of the 21 ordered pairs

{(1’ l)a (1> 2)9 Ty (1’ 6)’ (2’ 2)) (2a 3)a ) (69 6)} o
e [fwe are interested in the sum of the two numbers showing on the upper faces of the two dice,
then the sample space consist of the 11 numbers {2,3,--,12}.

1.3.  Basic Combinatorial Analysis

I1.3.A. PERMUTATIONS
The factorial of a non-negative integer number r is given by
rl=r(r—1)---(1) (I.1)
When » =0 or r =1, the factorial is one:
0!=1 (1.2)

1.3-Basic Combinatorial Analysis
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1'=1 (1.3)
Suppose that D is a set with n elements.

A permutation of size k € {0, L, '-,n} from D is an ordered sequence of distinct elements of D ;

i.e., a sequence of the form {x,x,,---,x; } where x; € D for each i and x; # x; for i # j.

Example 1.21

Let 0={4,B,C,D}.

e Permutations of length 1 are: {4}, {B}, {C}, {D}.
e Permutations of length 2 are: {A,B} s {A,C} , {A,D}, {B,A} , {B,C}, s {D,C}.

Exercise 1.3

In Example 1.21, write down all permutations of all possible lengths.

The number of permutations of length & from an n-element set is

I’l(k) _ n!
(n—k)! (1.4)

=n(n-1)---(n—k+1)

Exercise 1.4

| In Exercise 1.3, determine the numbers of permutations.

Exercise 1.5

| What is the number of permutations of length » from an n-element set?

1.3.B. POWERS OF REAL NUMBERS

Let aeR, seR and n € N. Define

a" P = a(a+s)a+2s)(a+(k-1)s) (15)

Example 1.22

Let a=3.5, s=1.2 and k=5. Then,

3.5(25) =3 .5(4.7)(5.9)(7.1)(8.3)
=5719.45115

Note that

1.3-Basic Combinatorial Analysis
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a%F) = a(a)---(a)
k terms (1.6)

aM = aa-1)--(a—k+1)
=q® (1.7)

= Falling Power of a

a" =a(a+1)--(a+k-1)

= Rising Power of a

(1.8)

100 = gy (1.9)
I.3.C. COMBINATIONS

A combination of size k € {0, 1,~-,n} from D is an unordered sequence of distinct elements of
D i.e., a sequence of the form {x;,x,,--,x;} where x; € D for each i and x;, #x; fori#j.

A combination of size £ from D corresponds to an unordered sample of size £ chosen without
replacement from the population D . For each combination of size k£ from D, there are k! distinct
orderings of the elements of that combination. Hence, the number of combinations is equal to

n!
cC , =—
=)
(1.10)
(n
The number (Z) 1s known as the binomial coefficient.
n .
[ ij, ifk>n (L.11)
k
n .
(k]:O, ifk<0 (1.12)

)
-1 (L13)
n
"1 114
ol™ (L.14)

1.3-Basic Combinatorial Analysis
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@ :(nfk] (L15)
[Zj =[Z:D+[ni: 1] (L16)

(@+b)" =f(2jakb"—k (L17)

k=0

I: Introduction

1.3.D. BINOMIAL THEOREM

1.3.E. MULTINOMIAL THEOREM

The number of ways to partition a set of nelements into k subsets of sizes ny,n,---,n; is equal
to the multinomial coefficient, given by

S 4 U =
RpsNg, iy ny ) g (L18)

n!

T (1)) ()

(aj+a,++ay)" = z [ " ]alnlagz-nazk (1.19)

nytnyttng=n My Mg,
— £ f

n+k—1
cases
n

Example 1.23

4 0 0.0 4 2 013 z 0.2 2 1 4.0 0
(a1+a2+a3) =(004ja1a2a3 +(013ja1(12a3 +[022)a1(12a3 ++[400ja1a2a3

\

15 cases

Exercise 1.6

In an exam with 10 participants, the first, second, and third highest marks are noted. How many
outcomes are there?

Example 1.24

Four husbands and their wives are to be seated on eight chairs. How many seating arrangements
are there in each of the following cases:

e There are no restrictions.

81=40320

1.5-BdsiIC Lormpingatorial Andiysis
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e Men must sit together and women must sit together.
(8x3x2x1)(4x3x2x1)=1152 =(2)(4!)?

e Men cannot sit together and women cannot sit together.

(2)(41)(4) =1152

e Men must sit together.
(41)%(5) = 2880

e Men cannot sit together.
(41)%(5) = 2880

e Each family must sit together.

(8)(6)(4)(2) =384

Example .25

Five engineering books, four science books, and three history books are arranged on a bookshelf.
Find the number of arrangements in each of the following cases:

e There are no restrictions.
12!=479,001,600
e The books in each subject must be together.

(5% 41x31)(3!) = 103,680

e The engineering must be together.

(5 71)(8) = 4,838,400

Example 1.26

Find the number of distinct arrangements of letter in the following words:

e random
6!=720
e signals

(;j (5) = (21)(120) = 2520

1.3-Basic combpinatorial Analysis
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e statistics

10\(7)( 4
( 3 j@@ (2)(1) = (120)(35)(6)(2)(1) = 50400

Example 1.27

How many solutions does the equation x+ y =r for integer x, y,and r, r >0 in the following
three cases:

e x,y20

r+1

e x,y20,x=y
r+1ifrisodd and r if r is even
e x,y>0

r—1

Example 1.28

How many solutions does the equation x+ y+z =10 for integer x, y, and z in the following
three cases:

e x,7,z20

11+10+---1=66

e x,y,z20,x#y, y#z,x#z
8+8+6+6+4+4+4+44+2+2=48
e x,y,z>0

8+7+---+1=36

1.4. Axioms of Probability

Probability is a function of an event that produces a numerical quantity that measures the likelihood
of that event.

There are several ways to assign probabilities to events. All events can have probabilities.
Axiom 1:

For any event 4, Pr(A4) > 0 (a negative probability does not make sense).

I1.4-Axioms of Probability
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Pr(4)>0, VA (1.20)
Axiom 2:

If S is the sample space for a given experiment, Pr(S)=1 (probabilities are normalized so that
the maximum value is unity).

Pr(S)=1 (1.21)

Axiom 3a:
If AnB=¢,then Pr{4uU B} =Pr(4)+Pr(B).

, =Pr(4)+Pr(B), ANB=¢ 1.22
r{AUB} #Pr(A)+Pr(B), ANB+#¢ 22

Corollary 1.1

Consider M <o sets A, A,,++, Ay, that are mutually exclusive, A4; mAj =@, Vi#j,

M M
P{UA,}:ZPr(A,.), ifd;,NA; =, Vi# ) (1.23)
i=1 i=1
Axiom 3b:
For an infinite number of mutually exclusive sets, 4;, i =1, 2, 3, ---, 4, N Aj =¢;Vi#j,
Pr[UAi]=ZPr(AZ-), ifd,NA; =¢Vi#j (1.24)
i=1 i=1

Theorem 1.1

For any sets 4 and B (not necessarily mutually exclusive),

Pr(AU B) = Pr(A4) + Pr(B) — Pr(A B) (1.25)

I1.4-Axioms of Probability
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1.4.A. VENN DIAGRAMS

Figure 1.2: Venn Diagram to Prove Theorem I.1
Note that Pr(4)+ Pr(B) involves adding the intersection region twice.

Theorem 1.2

Pr(A) =1-Pr(4) (1.26)

Theorem 1.3

Ac B = Pr(4) < Pr(B) (1.27)

1.4.B. ATOMIC OUTCOMES:
Events that cannot be decomposed into simpler events.

Often, atomic outcomes are assigned equal probabilities.

If there are M mutually exclusive collectively exhaustive atomic outcomes &y, &5, -+, &y, We
could assign (in case there is no information about the likelihood of the outcomes).

Pr(&,) = é Vm (1.28)

For example, (1.28) applies for the numbers on the six faces of a standard cubic die, and the
probability of each number is one sixth (1/6). However, (1.28) does not apply if some faces of the
die are larger than other faces.

Obviously, when the M outcomes are mutually exclusive collectively exhaustive, we have

é:im(:j:¢’Vi¢j

6@,:5:&[6@,]:1 (129)

m=1 m=l1

I1.4-Axioms of Probability
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Example 1.29

Consider the coin flipping experiment of Example 1.15. In this case, there are only two atomic
events, £, =H and &, =T . Provided the coin is fair (again, not biased towards one side or the
other), we have every reason to believe that these two events should be equally probable. These
outcomes are mutually exclusive and collectively exhaustive (provided we rule out the possibility
of the coin landing on its edge). According to our theory of probability, these events should be
assigned probabilities

Pr(H) =Pr(T) :%

Example 1.30

Consider the dice rolling experiment of Example 1.16. If the die is not loaded, the six possible
faces of the cubic die are reasonably taken to be equally likely to appear, in which case, the
probability assignment is

Pr(1) = Pr(2) = --- = Pr(6) =%

From this assignment we can determine the probability of more complicated events, such as

Pr(even number is rolled)=Pr(2 U4 U 6)
=Pr(2)+Pr(4)+Pr(6)
1 1

Example 1.31

In Example 1.17, a pair of dice were rolled. In this experiment, the most basic outcomes are the 36
different combinations of the six atomic outcomes of the previous example. Again, each of these
atomic outcomes is assigned a probability of 1/36. Next, suppose we want to find the probability
of the event 4 = {Sum of two dice = 5} 5 Then,

Pr(4) =Pr{(1,4)U(2,3)U3,2)U(4,1)}
= Pr(1,4) + Pr(2,3) + Pr(3,2) + Pr(4,1)

I 1 1 1
=—t—+—+—

36 36 36 36
_ L

9

A ={two numbers are identical |

I1.4-Axioms of Probability
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1.4.C. RELATIVE FREQUENCY APPROACH

The relative frequency approach requires that the experiment we are concerned with be
repeatable.

The probability of an event, can be assigned by repeating the experiment a large number of times
and observing how many times the event actually occurs.

Pr(4) = lim 24

n—© N

To get an exact measure of the probability of an event using the relative frequency approach, we
must repeat the event an infinite number of times.

L5.  Joint and Conditional Probabilities

Pr(A4,B)=Pr(AN B) (1.30)
The above can be extended to more than two events.
If 4 and B are mutually exclusive, then their joint probability is zero= Pr(4,B) = Pr(¢) =0.
Both events (sets) 4 and B can be expressed in terms of atomic outcomes.

We then write 4 "B as the set of those atomic outcomes that is common to both and calculate the
probabilities of each of these outcomes.

Alternatively, we can use the relative frequency approach:

Pr(4, B) = lim —4:5 (131)

n—o n

Example 1.32

A standard deck of playing cards has 52 cards that can be divided in several manners. There are
four suits (spades, hearts, diamonds, and clubs), each of which has 13 cards (ace, 2, 3,4, ..., 10,
jack, queen, king). There are two red suits (hearts and diamonds) and two black suits (spades and
clubs). Also, the jacks, queens, and kings are referred to as face cards, while the others are number
cards.

Suppose the cards are sufficiently shuffled (randomized) and one card is drawn from the deck. The
experiment has 52 atomic outcomes corresponding to the 52 individual cards that could have been
selected. Hence, each atomic outcome has a probability of 1/52.

Define the events: 4 = {red card selected}, B = {number card selected}, and C = {heart selected}.

Since the event 4 consists of 26 atomic outcomes (there are 26 red cards), then Pr(4) = 26/52 =
1/2.

Likewise, Pr(B) = 40/52 = 10/13 and Pr(C) = 13/52 = 1/4.

Lios JUIIIL UMW UTTUIUIVI UL | T VUL
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Events 4 and B have 20 outcomes in common, hence Pr(4,B) = 20/52 = 5/13.
Likewise, Pr(4,C) = 13/52 = 1/4 and Pr(B,C) = 10/52 = 5/26.

It is interesting to note that in this example, Pr(4,C) = Pr(C). This is because C < A4 and as a result
AnC=C.

Often the occurrence of one event may be dependent upon the occurrence of another.

In the previous example, the event 4 = {a red card is selected} had a probability of Pr(4) = 1/2. If
it is known that event C = {a heart is selected} has occurred, then the event 4 is now certain
(probability equal to 1), since all cards in the heart suit are red.

Likewise, if it is known that the event C did not occur, then there are 39 cards remaining, 13 of
which are red (all the diamonds). Hence, the probability of event 4 in that case becomes 1/3.

Clearly, the probability of event 4 depends on the occurrence of event C.

We say that the probability of 4 is conditional on C. The probability of 4 given knowledge that
the event C has occurred is referred to as the conditional probability of 4 given C.

The shorthand notation Pr(A4|C) is used to denote the probability of the event 4 given that the
event C has occurred, or simply the probability of 4 given C.

Definition 1-6

For two events 4 and B, the probability of 4 conditioned on knowing that B has occurred is

Pr(A4, B)

Pr(4|B)= Pr(B)

, Pr(B) #0 (1.32)

This definition of conditional probability does indeed satisty the axioms of probability.

Pr(4, B) =Pr(4| B)Pr(B)

(133)
= Pr(B| ) Pr(4)

Pr(4, B,C) = Pr(4| B,C)Pr(B,C)

(1.34)
=Pr(4| B,C)Pr(B| C)Pr(C)

Example 1.33

Consider the experiment of drawing cards from a standard deck. Suppose that we select two cards
at random from the deck.

When we select the second card, we do not return the first card to the deck. We are selecting cards
without replacement.

The probabilities associated with selecting the second card are slightly different if we have
knowledge of which card was drawn on the first selection.

1.2-JOINL arid CoraiLoridl Froodpiities
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Let A = {first card was a spade} and B = {second card was a spade}. The probability of the event
A can be calculated as in the previous example to be Pr(4) = 13/52 = 1/4. Likewise, if we have no
knowledge of what was drawn on the first selection, the probability of the event B is the same,
Pr(B) = 1/4. To calculate the joint probability of 4 and B, we have to do some counting.

When we select the first card there are 52 possible outcomes.
Since this card is not returned to the deck, there are only 51 possible outcomes for the second card.

Hence, this experiment of selecting two cards from the deck has 52*51 possible outcomes each
of which is equally likely and has a probability of 1/(52 *51) . Therefore,

C13(12) 1

Pr(4,B)=——==—

- 52(51) 17

The conditional probability of the second card being a spade given that the first card is a spade is
then

Pr(4,B)=Pr(B|4)Pr(4)
)

_Pr(4,B) 117 4
Pr(B14)= Pr(4) U4 17

However, calculating this conditional probability directly is probably easier than calculating the
joint probability. Given that we know the first card selected was a spade, there are now 51 cards
left in the deck, 12 of which are spades, thus

12 4

PI'(B|A)—§—E

Once this is established, then the joint probability can be calculated as
41 1

Pr(A,B)zPr(B|A)Pr(A)_ﬁZ_ﬁ

Example 1.34

In a game of poker, you are dealt five cards from a standard 52 card deck. What is the probability
that you are dealt a flush in spades? (A flush is when you are dealt all five cards of the same suit.)

e What is the probability of a flush in spades?
e What is the probability of a flush in any suit?

Let A; be the event {ith card dealt to us is a spade}, i =1,2,3,4,5. Then

I.5-Joint and Conditional Probabilities
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Pr(flush in spades) =Pr(4;, 4,, 43,44, As)

1
Pr(4y)=7
121 1
Pr(Al,A2)=Pr(A2|A1)Pr(A1)=§Z=ﬁ
111 11
Pr(Ay, Ay, A3 )=Pr(As | A;, Ay Pr( Ay, Ay)=——=——
(1o da. Ay ) = Pr(ds |y, 42 )Pr(did2) =555 =555
10 11 11
Pr( Ay, dp, Az, Ay) =Pr(Ay| Ay, Ay, d3)Pr( Ay, dp, dy) =20 =
9 11 33
Pr(A1’A2,A3gA4’A5):Pr(A5’Al,Az,A3,A4)Pr(Al’A2,A3’A4)=4_84165:66640
Pr(ﬂushinanysuit):4( 33 ): &
66,640 ) 16,660

1.6. Bayes’s Theorem

Theorem 1.4

For any events 4 and B such that Pr(B) =0,
Pr(4,B)="Pr(4|B)Pr(B)=Pr(B|4)Pr(4) =

Pr(B|4)Pr(4)
Pr(B)

Pr(4|B)=

Pr(4|B)Pr(B)
Pr(A4)

Pr(B|4)=

Theorem L.5: Theorem of Total Probability

Let By, By, -, B, be aset of mutually exclusive and exhaustive events. Thatis, B, "B ; = ¢ for

all i # j and
n n
B =S=> Pr(B))=1
i=l i=l1

Then

L1.6-Bayes’s Theorem
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Pr(A) = Pr(A| B;)Pr(B;)
i=1

Theorem 1.6: Bayes’s Theorem

Let B, B,,---, B, be aset of mutually exclusive and exhaustive events. Then
Pr(4,B;)
Pr(A4)
Pr(4,B;)

Pr(B;|A4)=

Zn:Pr(A|Bi)Pr(B,-)

i=1

Example 1.35

A certain auditorium has 30 rows of seats. Row 1 has 11 seats, while Row 2 has 12 seats, Row 3
has 13 seats, and so on to the back of the auditorium where Row 30 has 40 seats. A prize is to be
given away by randomly selecting a row (with equal probability of selecting any of the 30 rows)
and then randomly selecting a seat within that row (with each seat in the row equally likely to be
selected).

e Find the probability that Seat 15 was selected given that Row 20 was selected.
e Find the probability that Row 20 was selected given that Seat 15 was selected.
¢ Find the probability that Row 5 was selected given that Seat 15 was selected.

The first task is straightforward. Given that Row 20 was selected, there are 30 possible seats in
Row 20 that are equally likely to be selected. Hence, Pr(Seat 15Row 20) = 1/30.

Without the help of Bayes’s theorem, finding the probability that Row 20 was selected given that
we know Seat 15 was selected would seem to be a formidable problem.

Using Bayes’s theorem,

1.6-Bayes’s Theorem
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Pr(Seat 15/Row 20)Pr(Row 20)

Pr(Row 20|Seat 15)= Pr(Seat 15)
r(Sea

The two terms in the numerator on the right-hand side are both equal to 1/30. The term in the
denominator is calculated using the help of the theorem of total probability.

30
Pr(Seat 15) = (Z LJL =0.0342
S k+10 )30

With this calculation completed, the a posteriori probability of Row 20 being selected given seat
15 was selected is given by:

11

Pr(Row 20|Seat 15)=-=930 _ ¢ 0325
0.0342

Note that the a priori probability that Row 20 was selected is 1/30 = 0. 0333. Therefore, the
additional information that Seat 15 was selected makes the event that Row 20 was selected slightly
less likely.

Using Bayes’s theorem again,

Pr(Seat 15|Row 5)Pr(Row 5)

Pr(Row 5|Seat 15)= Pr(Seat 15)

Pr(Seat 15|Row 5) = %

Pr(Seat 15,Row 5) = Pr(Seat 15|Row 5)Pr(Row 5)
11

1530

The term in the denominator is the same as the corresponding one in the previous part.

30
Pr(Seat 15) = (Z ﬁ],%o =0.0342

k=5
Therefore,
11
Pr(Row 5[Seat 15) =% = 0.065

The additional information that Seat 15 was selected makes the event that Row 5 was selected
more likely.

L1.6-Bayes’s Theorem
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In some sense, this may be counterintuitive, since we know that if Seat 15 was selected, there are
certain rows that could not have been selected (i.e., Rows 14 have fewer than 15 seats) and,
therefore, we might expect Row 20 to have a slightly higher probability of being selected compared
to when we have no information about which seat was selected.

Note that the event that Seat 15 was selected makes some rows much more probable, while it
makes others less probable and a few rows now impossible.

L.7. Independence

In Example 1.35, it was seen that observing one event can change the probability of the occurrence
of another event. In that particular case, knowing that Seat 15 was selected, lowered the probability

that Row 20 was selected. We say that the event A={ROW 20 was selected} is statistically

dependent on the event B ={Seat 15 was selected} .

If the description of the auditorium were changed so that each row had an equal number of seats
(e.g., all 30 rows had 20 seats each), then observing the event B = {Seat 15 was selected} would

not give us any new information about the likelihood of the event A = {Row 20 was selected} .In

that case, we say that the events 4 and B are statistically independent.
Mathematically, two events 4 and B are statistically independent if

Pr(4| B) = Pr(4)
Note that if Pr(4|B) = Pr(4), then the following two conditions hold

Pr(B| A)=Pr(B)

Pr(A,B)=Pr(4| B)Pr(B)
=Pr(A4)Pr(B)

Furthermore, if Pr(4 | B) # Pr(4), then the other two conditions do not hold.

Definition I-7

Two events are statistically independent if and only if

Pr(A4,B)="Pr(4)Pr(B)

Example 1.36

Consider the experiment of tossing two distinguishable dice and observing the numbers that appear
on the two upper faces. For convenience, let the first die tossed being red and the second being
blue. Let

A = {number on the red die is less than or equal to 2}
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B= {number on the blue die is greater than or equal to 4}

C= {the sum of the numbers on the two dice is 3}

Let’s compare joint probabilities with products of single event probabilities.

Pr(A4)=1/3
Pr(B)=1/2
Pr(C)=1/18

Multiplying each two probabilities above results in
Pr(A)Pr(B) = %

Pr(A)Pr(C) = %

1
Pr(B)Pr(C)=—
(B)Pr(C) =
Of the 36 atomic outcomes of the experiment, six belong to the event 4 " B, and hence,
Pr(A4,B) = 1
’ 6

Since Pr(4, B) = Pr(A4)Pr(B), we conclude that the events 4 and B are independent.

What about the events 4 and C?

Of the 36 possible atomic outcomes of the experiment, two belong to the event 4" C, and hence,

1
Pr(4,C)=—
T

Since Pr(A4,C) # Pr(A)Pr(C), the events 4 and C are not independent.

Finally, we look at the pair of events B and C. Clearly, B and C are mutually exclusive. If the

white die shows a number greater than or equal to 4, there is no way the sum can be 3.

Hence, Pr(B,C) =0 # Pr(B)Pr(C), and these two events are dependent.

The previous example brings out a point that is worth elaborating on. It is a common mistake to
equate mutual exclusiveness with independence. Mutually exclusive events are not the same thing
as independent events. In fact, for two events 4 and B for which Pr(A)= 0 and Pr(B) =0, 4

L. 7-Independence
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and B can never be both independent and mutually exclusive. Thus, mutually exclusive events are
necessarily statistically dependent.

Note that intersecting events need not be independent. Consider the following example.

Example 1.37

Consider the experiment of tossing a fair die and observing the number that appears on the upper
face. Consider the events A = {2, 4, 6} and B= {2, 4,5} :

Obviously, Pr(4) =Pr(B)=1/2, and hence, Pr(4)Pr(B)=1/4.

However, the joint event C=ANB = {2, 4} has the probability Pr(C) =1/3, which is not equal to

the product of the individual event probabilities. Therefore, 4 and B are dependent events even
though they are intersecting.

Definition I-8

The events A, B and C are mutually independent if each pair of events is independent; that is,
Pr(4, B) = Pr(A4) Pr(B)
Pr(4,C)=Pr(4)Pr(C),
Pr(B,C) =Pr(B)Pr(C)

and in addition,

Pr(A4,B,C) = Pr(A)Pr(B)Pr(C).

Definition I-9

The events A4;,4,,---, 4, are independent if any subset of k£ < n of these events are independent,
and in addition

Pr(4,,4,,---,A4,) =Pr(4;)Pr(4,)---Pr(4,).

Suppose we have some time waveform X (z) which represents a noisy signal that we wish to
sample at various points in time, #,f,,---,¢, such that 4; = X(¢;). In some cases, we have every

reason to believe that the value of the noise at one point in time does not affect the value of the
noise at another point in time. Hence, we assume that these events are independent and write

Pr(4,,4,,--,4,)=Pr(4;)Pr(4,)---Pr(4,)

1.8. Discrete Random Variables

Suppose we conduct an experiment which has some sample space S . Furthermore, let £ be some
outcome defined on the sample space S . It is useful to define functions X = f(&) of the outcome

1.8-Discrete Random Variables
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&. The function f has as its domain all possible outcomes associated with the experiment. The
range of the function f will depend upon how it maps outcomes to numerical values but in general
will be the set of real numbers or a subset of the set of real numbers.

Definition I-10

A random variable is a real-valued function of the elements of a sample space S. Given an
experiment with sample space S, the random variable X maps each possible outcome £ e S to a

real number X = f(&) as specified by some rule.

If the mapping X (&) is such that the random variable X takes on a finite or countably infinite
number of values, then we refer to X as a discrete random variable; whereas, if the range of X (&)
is an uncountably infinite number of points, we refer to X as a continuous random variable.

Since X = /(&) is a random variable whose numerical value depends on the outcome of an
experiment, we give X a probabilistic description by stating the probabilities that the variable X
takes on a specific value or values (e.g., Pr(X :3) or Pr(X > 8)). For now, we will focus on
random variables that take on discrete values and will describe these random variables in terms of
probabilities of the form Pr(X =x).

Definition 1-11

The probability mass function (PMF) Py (x) of a random variable X is a function that assigns a

probability to each possible value of the random variable X . The probability that the random
variable X takes on the specific value x is the value of the probability mass function for x. That
is,

Py (x)=Pr(X =x)

Example 1.38

A discrete random variable may be defined for the random experiment of flipping a coin. The
sample space of outcomes is S = {H I } . We could define the random variable X tobe X (H)=0

and X (T)=1. That is, the sample space is mapped to the set {0, l} by the random variable X .

Assuming a fair coin, the resulting probability mass function is
Py (0)=Pr(X =0)=Pr(H) :%

PX(I):%

Note that the mapping is not unique and we could have just as easily mapped the sample space

1.8-Discrete Random Variables
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to any other pair of real numbers (e.g., {—1, +1} ).

Example 1.39

Suppose we repeat the experiment of flipping a fair coin n times and observe the sequence of
heads and tails. A random variable Y could be defined to be the number of times tails occurs in n
trials. It turns out that the probability mass function for this random variable is

poo="(1). k=01n
Y k)\ 2

The details of how this PMF is obtained will be deferred until later in this section.

Example 1.40

Again, let the experiment be the flipping of a coin, and this time we will continue repeating the
trials until the first time a heads occurs. The random variable Z will represent the number of times
until the first occurrence of a heads. In this case, the random variable Z can take on any positive
integer value 1< Z <oo. The probability mass function of the random variable Z can be worked
out as follows:

Py (n)=Pr(Z =n)=Pr(n-1 tails followed by one heads)
= (P(T))"™" Pr(H)

0y
10

1 n
PZ(n)z(E) Tk

Hence,

Note that the following must always hold for discrete random variables

0<Py(x)<1
D Py(x)=1

[.8.A. BERNOULLI RANDOM VARIABLE

Consider an experiment with the sample space S =10, 1} . Let

1.8-Discrete Random Variables
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Py()=p
Py (0)=1-p
X is called a Bernoulli random variable.

1.8.B. BINOMIAL RANDOM VARIABLE

Consider repeating a Bernoulli trial # times, where the outcome of each trial is independent of all
others. We say that the repeated experiment has a sample space of S, ={0,1} " which is referred

to as a Cartesian space. That is, outcomes of the repeated trials are represented as n element
vectors whose elements are taken from S .

1319"'9190707"'70
Sk=|_& ek

The probability of this outcome occurring is

Consider, for example, the outcome

Pri&t=pFa-p "t

The probability does not change if we shuffle the digits. The order of the 1s and Os in the sequence
is irrelevant.

Let the random variable X represent the number of times the outcome 1 has occurred in the
sequence of n trials. This is known as a binomial random variable and takes on integer values
fromOto n.

To find the probability mass function of the binomial random variable, let 4, be the set of all

outcomes that have exactly k£ 1s and n—k 0Os. Note that all outcomes in this event occur with the
same probability. Furthermore, all outcomes in this event are mutually exclusive.

Py (k) =Pr(4y)

= (# of outcomes in 4, ) . (probability of each outcome in 4, )

)k \nk
—(ka (1-p)

The binomial coefficient is given by

n) n!
k) k\(n—k)

As a check, we verify that this probability mass function is properly normalized:

1.8-Discrete Random Variables




Mohammad M. Banat - EE 360: Random Signal Analysis 33

I: Introduction

> Py(k) = Z(ijka—m"‘k
k=0 k=0

=(p+1-p)”
=1

In this calculation, we have used the binomial expansion

(0[+ﬂ)n _ i(”}akﬂn—k

k=0 k
[.8.C. POISSON RANDOM VARIABLE

Consider a binomial random variable X where the number of repeated trials 7 is very large. In
that case, evaluating the binomial coefficients can pose numerical problems. If the probability of
success in each individual trial p is very small, then the binomial random variable can be well

approximated by a Poisson random variable. That is, the Poisson random variable is a limiting case
of the binomial random variable. Formally, let n approach infinity and p approach zero in such

a way that

limnp=«
n—>0

Then the binomial probability mass function converges to the form

am

Py(m)y=—=e%, m=0,1,2, -
m!

which is the probability mass function of a Poisson random variable. We see that the Poisson
random variable is properly normalized by noting that

Y Py(m)=1
m=0

The number of customers arriving at a cashier in a store during some time interval may be well
modeled as a Poisson random variable, as may the number of data packets arriving at a given node
in a computer network.

[.8.D. GEOMETRIC RANDOM VARIABLE

Consider repeating a Bernoulli trial until the first occurrence of the outcome &,. If X represents

the number of times the outcome &; occurs before the first occurrence of &, then X is a
geometric random variable whose probability mass function is

PX(k)=(l—p)pk, k=091’2="'

1.8-Discrete Random Variables
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We might also formulate the geometric random variable in a slightly different way. Suppose X
counted the number of trials that were performed until the first occurrence of &,. Then the
probability mass function would take on the form

PX(k)=(1—p)pk_l, k=1529"'

The geometric random variable can also be generalized to the case where the outcome &, must

occur exactly m times. We can derive the form of the probability mass function for the generalized
geometric random variable from what we know about binomial random variables.

For the m -th occurrence of &, to occur on the & -th trial, then the first & —1 trials must have had

m—1 occurrences of &, and kK —m occurrences of &;. Then

PX(k) = Pr({m—l occurrences of 580 k-1 trials} ﬁ{éo occurs on the kth tria]})
k-1 _ _
=( jpk "(1-p)" (1= p)

m—1

k-1
:( jpk_m(l—P)m, k=m,m+1,--
m—1

This generalized geometric random variable sometimes goes by the name of a Pascal random
variable or the negative binomial random variable.

kokok

1.8-Discrete Random Variables
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II. RANDOM VARIABLES, DISTRIBUTIONS, AND DENSITY FUNCTIONS
II.1. Introduction

Discrete random variables have just been described by their probability mass functions. While this
description works fine for discrete random variables, it is inadequate to describe random variables
that take on a continuum of values.

In this chapter, we introduce the cumulative distribution function as an alternative description of
random variables that is appropriate for describing continuous as well as discrete random variables.
The probability density function is also covered.

Consider a discrete random variable X that takes on values from the set
{0,1/N,2/N,---,(N—-1)/N} with equal probability. Then

PX(K):i, k=0,1,,N-1
N) N

This is the type of random variable that is produced by “random” number generators in software
packages like MATLAB and Mathematica. In these cases, N is taken to be a fairly large number
so that it appears that the random number can be anything in the continuous range [0, 1). Consider
the limiting case as N — o ; so that the random variable can truly fall anywhere in the interval

[0,1). Then
k .1
Py| —|= lim —
X(Nj Nian
=0

That is, each point has zero probability of occurring. Yet, something has to occur! This problem is
common to continuous random variables, and it is clear that the probability mass function is not a
suitable description for such a random variable.

I1.2. The Cumulative Distribution Function (CDF)

Definition I1-1

The cumulative distribution function (CDF) of a random variable X is given by

Fy(x)=Pr(X <x)

CDF Properties
e Since the CDF is a probability, it must take on values between 0 and 1.
o Fy(—0)=0 and Fy(x)=1.

II. 1-Introduction
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e For x;<Xx, :{Xﬁxl} g{Xﬁxz} = Fy(x1)< Fy(x,) . This implies that the CDF is a

monotonic non-decreasing function.

<
X <x;
-y
X <x, < »
x<X<x,
< > X
X1 X2

o {X<x,l={X<x}U{x <X <x,} :>FX(x2)=FX(x1)+Pr({x1 SXSxZ}).
. Pr({xl SXsz})zFX(xZ)—FX(xl).

Example I1.1

Which of the following mathematical functions can be the CDF of some random variable?
a. Fy(x)= l+ltan‘1(x)
2

b. FX(x):(l—e_x)u(x)
@ FX(x):e_x2
d Fy(x)= xzu(x)

To determine this, we need to check that Fy(—0)=0, Fy(0)=1 and that the function is

monotonically increasing in between. The first two functions satisty these properties and thus are
valid CDFs. The third function is decreasing for positive values of x, while the forth function

takes on values greater than 1 and F'y () #1.

Let’s return to the computer random number generator that generates N possible values from the
set {0,1/ N,2/N ,~--,(N - 1)/ N } with equal probability. The CDF of this random variable is

illustrated below.

II.2-The Cumulative Distribution Function

(CDF)
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Fy(x)

1.0
0.8
0.6
0.4
0.2

0 02 04 06 0.8 1.0

Figure I1.1: CDF of the random variable X for N =10
Fy(x)

1.0
0.8
0.6
0.4
0.2

0 02 04 06 0.8 1.0

Figure I1.2: CDF of the random variable X for N =50
Fy(x)

1.0
0.8
0.6
0.4
0.2

0 02 04 06 0.8 1.0

Figure I1.3: CDF of the random variable X for N — «

Note that when N — o we have

0, x<0
Fy(x)=qx, 0<x<l1
1, x>1

II.2-The Cumulative Distribution Function

(CDF)
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Example 1.2

Suppose a random variable has the value {—4,—2.6,—1,3.1,7} with probabilities
{0.2,0.15,0.3,0.25,0.1} . Sketch the CDF.

08 1

206 R
=

04 F .

02F = -

4 2 0 2 4 6 8 10 12

In this limiting case, the random variable is a continuous random variable and takes on values in
the range [0, 1) with equal probability. It is referred to as a uniform random variable. Continuous
random variables have a continuous CDF, while discrete random variables have a discontinuous
CDF with a staircase type of function.

II.2-The Cumulative Distribution Function

(CDF)
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Example I1.3

Suppose a random variable has a CDF given by F X(x)=(1_e—x )u(x). Find the following
quantities:

Pr(X >5)=Pr(5< X <)
=1-Fx(5)
=1-(1—e ) =e

Pr3<X<7)=Pr3<X<7)

Pr({X>5)n{X<7}) Pr5<X<7)_ Fy(D-Fy(5) _e’-e”

Pr(X >5|X <7)= —
Pr(X <7) Pr(X <7) Fy(7) l—e

For a discrete random variable, and for x;, <x <x;

k
FX(X):ZPX(xi)u(x_xi)
i=1

I1.3. The Probability Density Function

Definition 11-2

The probability density function (PDF) of the random variable X evaluated at the point x is

Pr(x< X <x+¢)
&
= lim FX(x+‘9)_FX(x)
&0 &

d
- F
dx x (%)

fx(®)=lim

I1.3.A. PDF PROPERTIES

fx(x)=0

Sx () ZdiFX(x)
x

II.3-The Probability Density Function
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Fy@= [ fxdy= | fx(&)dé

= [ fx (x)dx

Fy(xo)= [ fx(ndy
=Pr(X <x)

Sx(x)

X0

Figure 11.4: Area under PDF

[ fx ()dx = Fy ()

=1

b b a
[Fx@dx= [ fyde= [ fy(x)dx

= Fy(b)~Fy/(a)
=Pr(a< X <b)

Example I11.4

(IL1)

(11.2)

Which of the following are valid probability density functions?

a. fy(x)=e u(x) fX(x)=le‘x/”u(x), b>0,a=b
a

b fy(x)=e
e fx@=—eP a=2  rr@="e, a=|2y
a a

II.3-The Probability Density Function
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3.2
—(x" -0, |x/<2
d fy(x)=14 d
0, otherwise
Fo) I, 0<x<l1
e. X)=
X 0, otherwise

2
£ fx@)=2xe u(x)
The function in b is not properly normalized, and is not a PDF.
The function in d takes on negative values, and is not a PDF.

The functions in a, e and f'are valid PDFS.

I1.3.B. THE GAUSSIAN (NORMAL) RANDOM VARIABLE

Definition I1-3

A Gaussian random variable is one whose probability density function can be written in the general
form

3 (x—m)2
2

fx@=——e

270°

The Gaussian PDF is centered about the point x =m and has a width that is proportional to o .

When m=0 and o =1, X is called a “standard normal” random variable. It is standard practice

to introduce a shorthand notation to describe a Gaussian random variable X ~ N (m, o 2) .

X (y-m)?

1 2
- 20
P \]272'62 Jooe @

II.3-The Probability Density Function
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Sx(x)

o4 \____________
0.3
0.2

0.1

—4-3-2-10 1 2 3 4

Figure I1.5: PDF of a standard normal random variable

Sx(x)

02 |-——————————5 -

0.15

0.1

0.05

|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
3

-3 0 6 9

Figure I1.6: PDF of a normal random variable with mean 3 and variance 4

II.3-The Probability Density Function
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Fy(x)

1.0
0.8
0.6
0.4
0.2

-6-4-2 0 2 4 6 8 1012

Figure I1.7: CDF of a normal random variable with mean 3 and variance 4

X

: _(r-m)?
Fy(x)= Je 202 gy

\/27:0'2

For a standard gaussian random variable

2

oy
quo=7%;fe 2 dy=1-0(x)

erf(x) = 7’ dy

2 X
— | €
72-‘(';
27 _p»
erfo(x) = —— j e dy
72'
X

=1-erf(x)

o
Q@o=7%;je > dy

F&Lﬂ=l—Q(x;mj

(IL3)

(IL4)

(IL5)

(IL6)

II.3-The Probability Density Function
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Sx(x)

—Xo X0
Figure I1.8: Q function

O(=x¢) =1-0(xo)

Example I1.5

A random variable has a PDF given by

(x43)?

1
e 8

fX(x):\/g

m=-3,0=2.

Determine

Pr(|X —3|>6)=Pr(X >9 or X <-3)

Pr(|X +3]<2)=Pr(-5< X <-1I)
=Fy(=1)-Fx(-5)
=1-0((-1+3)/2)-[1-0((-5+3)/2)]
=1-0()-[1-0(-D)]
=Pr(X >-5)-Pr(X >-1)
=0(-H-0()
=1-20(1)

I1.3-The Probability Density Function
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Pr(|X —2|>1)=Pr(X <1)+Pr(X >3)
=1-0(2)+0(3)

I1.3.C. UNIFORM RANDOM VARIABLE

a<x<b

fx(x)=3b-a’
0, otherwise

a b

Figure I1.9: PDF of a uniform random variable

Fy(x)

a b
Figure 11.10: CDF of a uniform random variable

I1.3.D. EXPONENTIAL RANDOM VARIABLE

fy(x) :%e_bu(x), b>0

X

Fy(x)= l—e b u(x)

II.3-The Probability Density Function
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Sx(x)
04

0.3

0.2

0.1

25 5 7.5 10

Figure I1.11: PDF of an exponential random variable with 5 =3

Fy(x)

0.75

0.5

0.25

2.5 5 7.5 10

Figure I1.12: CDF of an exponential random variable with 5 =3

I1.3.E. LAPLACE RANDOM VARIABLE

ik
fX(x)zie b b>0
1 *
Eeb, x<0
Fy(x)=
1—%e_b, x>0

II.3-The Probability Density Function
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Sx(x)

-10 -5 0 5 10

Figure 11.13: PDF of a Laplace random variable with 5 =3

Fy(x)
1

0.5

-10 0 10

Figure 11.14: CDF of a Laplace random variable with 5 =3

11.3.F. GAMMA RANDOM VARIABLE

o
_\b
fx(x)= O u(x), b>0,c>0

=3
Fy () :Tclf”(")

D(a)=[e~'t* at
0

When « is an integer,

II.3-The Probability Density Function
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Na)=(a-1!, a>0

In other words,

al=al(a)

For integer and non-integer o,

INa+)=al(a), a>0
s
. )= [e 't dt
0

Special Cases
1. c isinteger: Erlang Random Variable

2. b=2 and c is half integer: ;(2 Random Variable.
3. c¢=1:Exponential Random Variable.

n—1 X
B <
b—u(x)

b(n—1)!

X m
_X n-l (b]
Fy(x)=|l1-e b,,;OT u(x)

11.3.G. ERLANG RANDOM VARIABLE

fx(x)=

The Erlang distribution plays a fundamental role in the study of wireline telecommunication
networks. In fact, this random variable plays such an important role in the analysis of trunked
telephone systems that the amount of traffic on a telephone line is measured in Erlangs.

I1.3.H. CHI-SQUARED RANDOM VARIABLE

c-1_ 2

. X e
F3()= o )

Fy(x)=——~7ux)

II.3-The Probability Density Function




Mohammad M. Banat - EE 360: Random Signal Analysis 49

II: Random Variables, Distributions, and Density Functions

I1.3.I. RAYLEIGH RANDOM VARIABLE

x2

fr()=—"5e 2 u(x), o>0
o

x2

Fy(x)=|1-e 207 |y (x)

The Rayleigh distribution arises when studying the magnitude of a complex number whose real
and imaginary parts both follow a zero-mean Gaussian distribution. The Rayleigh distribution
arises often in the study of noncoherent communication systems and also in the study of land
mobile communication channels, where the phenomenon known as fading is often modeled using
Rayleigh random variables.

Sx(x)
0.8

0.6
0.4

0.2

2.5 5 7.5 10

Figure I1.15: PDF of a Rayleigh random variable with o =2

II.3-The Probability Density Function
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Fy(x)

1.0

0.75

0.5

0.25

2 4 6 8 10
Figure 11.16: CDF of a Rayleigh random variable with o =2

11.3.J. RICIAN RANDOM VARIABLE

x2+a2

(x):ie 207 | 4L u(x), a>0,0>0
X 2 0 2
o o

In this expression, the function 7,(x) is the modified Bessel function of the first kind of order
zero, which is defined by

1 2z
]O(x):ZJ‘excos(ﬁ)de
0

Marcum’s Q-function which describes the CDF of a Rician random variable. It is defined by

ZZ+L12

O(a, ) = Jze_ 2 [ (az)dz
;

Fx(x)=1—Q(ﬁ 1)

(e ’ (o2
11.3.K. CAUCHY RANDOM VARIABLE

b

fx#)= ﬂ(b2 +(x—a)2)’

b>0

1 1 1 x—a
Fy(x)=—+—tan
(@ =3 L[ 24

II.3-The Probability Density Function
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I1.4. Conditional Distribution and Density Functions

Definition 11-4

The conditional cumulative distribution function of a random variable X conditioned on that the
event A has occurred is given by:

Pr({X<x}n4)
Pr(4)

Fya(0)=Pr(X <x| 4) = , Pr(4)#0

Example I1.6

Suppose a random variable X is uniformly distributed over the interval [0,1) so that its CDF is

given by:
0, x<0
Fy(x)=qx, 0<x<1
I, x>1

Pr({X <x},{X <1/2})
Pr({X <1/2})

Let A:{X<%},then Fy(x)=

x<0={X <xjN{X <12} ={X <x|x <0} = Fy4(x)=0

ogx31/2:>{X3x}m{X<1/2}={X3x|03xs1/2}:>FX|A(x)=l/i2=2x

x>12={X <x}n{X <1/2} ={X <1/2} = Fy 4(x) =1

Then
0, x<0
FX|A(x): 2x, OSXSI/Z
L, x>1/2
If A={a<X <b} and a<b, then
0, x<a
Fy(x)= FX(x)_FX(a), a<x<b
Fy(b)-Fy(a)
1, x>b

I1.4-Conditional Distribution and Density
Functions
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Definition I1-5

The conditional probability density function of a random variable X conditioned on some event
A is

Fxja(x) = diFX|A(x)
X
Sx(x)

S Xlfasx<p)(X) = Pr(a < X <D) ’
0, otherwise

a<x<b

Example I1.7

Let X be arandom variable representing the length of time we spend waiting in the grocery store
checkout line. Suppose the random variable X has an exponential PDF given by

X

fr)= %e“fu(x)

Let ¢ =3. What is the PDF for the amount of time we spend waiting in line given that we have
already been waiting for 2 minutes?

A= {X > 2} . Use equation in Definition II-5 with a =2 and b =.

2
Pr(A)=1-Fy(2)=e 3
Therefore,
x=2
S Xfasx<p)(¥) = Jx (2x) u(x—2)= %e 3 u(x-2)

e 3

kosk ok

I1.4-Conditional Distribution and Density
Functions
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III. OPERATIONS ON A SINGLE RANDOM VARIABLE

In this chapter we introduce several mathematical operations that can be applied to single random
variables.

II1.1. Expected Value of a Random Variable

Definition I1I-1

The expected value of a random variable X which has a PDF fy(x) is defined as

=X (ITL.1)
For a discrete random variable
Sx ()= Py (x)8(x—x;) (I11.2)
k

Then, the expected value of a discrete random variable is
E[X]= Zk:kaX(xk) (I1L.3)
For example, an exam is held for the 22 students in the 360 summer 2020 class. Grades are
distributed as follows:
7 students got 70
4 students got 80
2 students got 90
6 students got 60
3 students got 50

7(70) + 4(80) +2(90) + 6(60) + 3(50)
22

X =

7 4 2 6 3
=—(70)+—(80)+—(90) + —(60) +—(50) = 68.18
22( ) 22( ) 22( ) 22( ) 22( )

III. 1-Expected Value of a Random Variable
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Example II1.1

Consider a discrete random variable that has the values {l, 2,4,7,1 l} , with respective probabilities

{0.35, 0.1,0.15,0.2, 0.2} . The mean value of this random variable is equal to

2 =0.35(1)+0.1(2) +0.15(4) + 0.2(18)
=0.35+0.2+0.6+3.6
=475

Example I11.2

Consider a random variable that is uniform over the interval [—4,9]. The mean value of this random
variable is equal to

1 9
=— | xdx
= 13_j4

Example 111.3

Consider a random variable X that has the PDF

X o0<x<é6

fx(x)=418"

0, otherwise

The mean value of this random variable is equal to
K
E [X ] =— j x 2dx
18
0
16°

183
—4

Example I11.4

Consider a random variable that has an exponential PDF given by

111.1-CEXPECLEd vdIUuE O d Karldorrl vdaridpie
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X

Fr()=2e Tu(x)
V4
E[X] =1J‘xe7dx
70
=7y

Example I11.5

Consider a Poisson random variable that has the PMF given by

ke—a

PX(k):aTak:()alaza

The expected value of this random variable is found as follows:

00 ake—a
E[X]=>k o
k=0
0 ake—a
=>k
2
© k-1
—qe Y 2
o (k=1)!
P
=aqe mzz“om!
a

Example II1.6

Consider a Rayleigh random variable with the PDF

x2

fx(®) =§e_202u<x)

The mean is calculated as follows:

III. 1-Expected Value of a Random Variable
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2

°0x2 X
E[X]=[Z5e 2974
1= e
:a\/zj.\/;e_ydy
0

=0,|—

2

Definition I11-2

Given a random variable X with PDF fy(x), the expected value of a function g(X) of that
random variable is given by

0

E[g(X)]= [ g(x)fx(x)dx (IIL4)

—00

For a discrete random variable, this definition reduces to

E[g(0)] =D g(x;)Px (x;) (I1L.5)
k

Theorem III.1

For any constants a and b,

E[aX+b]= T (ax+Db) f y(x)dx

=a T xf y (x)dx+b T Sy (x)dx (I11.6)
=aE[X]+b
E{ng(X)} = E[g,(X)] (I1.7)

II1.2. Moments

Definition I11-3

The nth moment of a random variable X is defined as

III.2-Moments
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0

E[X} = [ %"/ (x)dx (IIL8)

—00

For a discrete random variable, this definition reduces to

E[X"}sz;’C’PX(xk) (IIL.9)
k

The zeroth moment is simply the area under the PDF and hence must be 1 for any random variable.

The first moment is what we previously referred to as the mean, while the second moment is the
mean squared value.

For some random variables, the second moment might be a more meaningful characterization than
the first. For example, suppose X is a sample of a noise waveform. We might expect that the
distribution of the noise is symmetric about zero (i.e., just as likely to be positive as negative) and
hence the first moment will be zero. So if we are told that X has a zero mean, this merely says
that the noise does not have a bias. On the other hand, the second moment of the random noise
sample is in some sense a measure of the strength of the noise.

II1.2.A. MEAN SQUARE VALUE
Xx2- E[XZJ
P mean of the square (IT1.10)
= [ x*fy (x)dx
II1.2.B. ROOT MEAN SQUARE (RMS) VALUE
X = E[Xz}
root of the mean of the square (IL.11)

Example I11.7

Consider a discrete random variable that has the values {l, 2,4,7,1 1} , with respective probabilities

{0.35, 0.1,0.15,0.2, 0.2} . The mean square value of this random variable is equal to

E[XZ} —0.35(1)2+0.1(2) 2 +0.15(4) 2 +0.2(7) 2 +0.2(11) 2

=035+0.4+2.4+9.8+24.2
=37.15

The RMS value is equal to

III.2-Moments
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X o =~37.15

=6.095

58

Example II1.8

Consider a discrete binomial random variable with the PMF

The first moment (mean) is calculated as follows:

Om
1
Z( jp (1-p)" "

The second moment can be calculated as follows:

Note that we can use the identity k& 2= k(k—-1)+k to get

+fk[2jpka—p)"‘k
k=0

E[Xszékz(ijk(l_p)n—k

Px(k){gpk(l—p)”‘k, k=0,1, -

&
=§k!(:n_!k),pk( P)
:leg—k)' K- py
- npkzl om0
“mp 3 gyt

E[Xz}:kzz;‘)k(k—l)(gpk(l—p)”_k

III.2-Moments
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The second sum is the mean, which has been calculated the above. The first sum can be calculated
similarly to the calculation of the mean, resulting in

2 n . " k(k—1)n! ne
%k(k—l)(kjp"(l—p) : ;ﬁpka—m :
N k(k—1n! ko Nk
" LGkt P
4 n! k n—k
=Sy " ka-
2 G D’ 7P
N (n-2)! 2= pyrt
“nin-p? Y G
=n(n—1)p i( j k2(1 P)nk
k=2
n—2
. _ me n—2—-m
=n(n-1)p Z_)( . Jp (1-p)
=n(n-1)p*

Adding the two results above produces

E[Xz}:npjtn(n—l)p2

=n’p? +np(1- p)

Example II1.9

Consider a discrete random variable that has the values {1, 2,4,7,1 1} , with respective probabilities

{0.35, 0.1,0.15,0.2, 0.2} . The 3™ moment of this random variable is equal to

E[Xﬂ =0.35(1)% +0.12)% +0.15(4) +0.2(7)3 +0.2(11) 3

=0.35+0.8+9.6+68.6+266.2
=345.55

II1.3. Central Moments

Definition I11-4

The nth central moment of a random variable X is defined as

III.3-Central Moments
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E[(X—,UX)n]:T(x—yX)an(x)dx (ITL.12)

For discrete random variables, this definition reduces to

E[(X—ﬂx)n}:Z(xk —ux )" Py (x)

k (IT1.13)
I11.3.A. VARIANCE
0')2( :E[(X—ﬂx) J
:E[XZ}—;& (111.14)
:_2_)?2
I11.3.B. STANDARD DEVIATION
o =y E[ (X 13 )] (IL.15)
Example I11.10

Consider a discrete random variable that has the values {l, 2,4,7,1 1} , with respective probabilities

{0.35, 0.1,0.15,0.2, 0.2} . The mean square value of this random variable is equal to

E[XZ} —0.35(1)2+0.1(2) 2 +0.15(4) 2 +0.2(7) 2 +0.2(11) 2

=035+0.4+2.4+9.8+24.2
=37.15

Using the mean from Example III.1, the variance is equal to
o% =37.15-(4.75)°
=14.5875

The standard deviation is equal to

oy =+/14.5875

~3.819

II1.4. Conditional Expected Values

Definition I1I-5

The expected value of a random variable X conditioned on some event A4 is

III.4-Conditional Expected Values
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0

E[X | 4]= j Xf x4 (X)dx (11L.16)

—00

For a discrete random variable, this definition reduces to

E[X | 4] ZkaX|A(xk)
(ITL.17)

Similarly, the conditional expectation of a function g(X) of arandom variable X conditioned on
the event A4 is

o]

E[2(X)[4]= [ g()fxa(x)dx (IIL18)

—00

For a discrete random variable, this becomes

E[g(X)]A4]=2 " g(x)Py4(xy) (IIL19)
k

Example I11.11

Consider a standard Gaussian random variable X . Let 4= {X > 0} .

@
PriX >0

2

= \/ze _Tu(x)
V4

Conditioned on 4, the expected value is equal to

Sxalx )— u(x)

E[X|A]=E[X|X>o]

ﬂxe T
o

I11.5. Transformations of Random Variables

I11.5.A. MONOTONICALLY INCREASING FUNCTIONS
Assume that Y is a continuous, one-to-one, and monotonically increasing function of X .
Y =g(X)

III.5-Transformations of Random Variables
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X=g7'(1)

Fy(y)=Pr(Y <y)
=Pr(g(X)<y)

=Pr(x<g”'(»)

~Fy(27')

\ 4
S

Then,
Fy(»)=Fx (g™ )
Note that
Fy(x)=Fy (g(x)

Differentiating with respect to y produces

III.5-Transformations of Random Variables
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III: Operations on a Single Random Variable

Goad -
frn=rx(g 1(y))ag ')

dx

:fX(x)d—y

x=g ()

_fx(%)
dy

dx

x=g~'(7)
Example I11.12

Consider a Gaussian random variable X with mean # and variance o 2. A new random variable
is formed as Y = aX +b, where a >0 (so that the transformation is monotonically increasing).

dy _
dx

a

Substituting x = r=b , we get
a

1 - D
fr(y)= 5 20
aN 2rwo
(y(ap+b))®
_ 1 o 22202
2ra’c?

Note that Y is Gaussian with mean au + b and variance a 252,

Example I11.13

Let X be an exponential random variable with [y (x)= 2e_2xu(x). Let Y =X 7. Determine

Sr(»).

III.5-Transformations of Random Variables
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gz:3x2
dx

1
x=y3

Solution:

froy =29
X7 lymys

1

2 5,3
=——=e¢ " u(y)

3y3

Note that Y is not an exponential random variable.

64

I11.5.B. MONOTONICALLY DECREASING FUNCTIONS

Fy(y)=Pr(Y <y)
=Pr(g(X)<y)

=Pr(x>g7'(»)

=1-Fy(g7'0)

Differentiating with respect to y produces

III.5-Transformations of Random Variables




Mohammad M. Banat - EE 360: Random Signal Analysis 65

III: Operations on a Single Random Variable

Goad -
frn=rx(g 1(y))ag ')

dx
=—fx (x)d_
V=g (»)
_ Sfx(¥)
dy
dx =g
dx
fy()’):f)((x)d_
Y x=g '(»)
_Sfx(x)
dy
x| | ,—g-1()
I11.5.C. NON-MONOTONIC FUNCTIONS
y=g(x)

i X
/xl x1+dxl X9 xZ+dX2 X3 X3+dX3
Figure II1.1: Non-monotonic function
In this case, we cannot associate the event {Y < y} with events of the form {X < g_l(y)} or

{X >g _1( y)} . To avoid this problem, we calculate the PDF of Y directly, rather than first finding
the CDF.

Note that

Pr(y<Y<y+dy)=fy(»)dy

III.5-Transformations of Random Variables
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{y<Y<y+dy}= U {x; <X <x;+dx;}|U U {x;+dx; <X <x;}

. + . —
ix;eX ix;eX

Since each of the events on the right-hand side is mutually exclusive, the probability of the union
is simply the sum of the probabilities, so that

frn= 2 FxGpde;+ Y fx(x)(=dx;)

xieX+ x;eX ™
dx
fY(y):ZfX(xi)d_
i xi=g ' (»)
:Z Sx(x))
o |V
Al =gy

Example I11.14

Suppose X is a Gaussian random variable with zero mean and variance o 2. Let Y =X?2. For any
positive value of y, y=x 2 has two real roots, namely, i\/; . For negative values of y, there are
no real roots. Using the last result above,

_ fX(+\/;)+fX(_\/;)
fY(y)— 2\4_\/;‘ 2‘_\/; u(y)
Fae(tv)+ (=)

= 2\/; u(y)

For a zero-mean Gaussian PDF, fy(x) is an even function so that fy (+\/;) =fy (—\/;)

Therefore,

Hence, Y is a gamma random variable.

III.5-Transformations of Random Variables
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Example II1.15

Suppose X is an exponential random variable with a PDF [, (x) =e "u(x). Let

Y =g(X)
= floor(.X)
=k, k<X<k+1

The PMF of Y for £k =0,1,--- is

Py (k) =Pr(k <X <k +1)

k+1
= I e Ydx
k
_ ok _ (kD)
II1.6. Characteristic Functions
Let
g(x)=e’

The characteristic function of a random variable X is given by

D y (w) =E[g(X)]

T (I11.20)
= [ e/ x ()
Jx(x)= L [ @ y(@e " de (I11.21)
27 o
Note that
Fifx®)} =@ y(-0) (I11.22)

We can get the PDF of a random variable from its characteristic function through an inverse
Fourier transform operation.

Example I11.16

Suppose X is an exponential random variable with a PDF [y (x) =e “u(x). The characteristic
function of X is found to be

III.6-Characteristic Functions
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O y(w)= J.eije_xdx
0
1

l-jo
This result assumes that @ is a real quantity. fy(x)=e “u(x)

Let fy(y)=ae “u(y).Note that @ must be positive. Note also that f(y) = af y (ay) . Using the
scaling property of the Fourier transform, the characteristic function of Y is given by
1
Cy(@)=a—=Px (ﬂj
o~ \a
a

_a—ja)

Let f,(z)=ae —a(z _b)u(z —b). Note that f,(z)= fy(z—b). Using the shifting property of the
Fourier transform, the characteristic function of Z is given by

D (@) =Dy (w)e

e job

a—jo

Example I11.17

" (n
Suppose X is a binomial random variable with a PDF f y(x) = 2 (kj p k 1-p)" *s (x—k).The
k=0
characteristic function of X is found to be

o0

® (@) = Jef“”‘(f(,’ij"(l—p)"‘ké(x—k)]dx
k=0

—0

Interchanging the orders of the summation and integration operators, we get

D y (@)= ﬁ[,’jp"a—p)”"‘ [ 6Ce—kye ™ dx
k=0

—00

Using the sifting property of the delta function,

III.6-Characteristic Functions
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®X<w)=f(2jpka—p)"-"ef”"
k=0

Combining the two terms that are raised to power k£ inside the summation operator,

n ok
O, (w)= Z(ZJ(pelw) (1-p)"*
k=0

:(l—p+pej”)n

Example I11.18

Suppose X is a standard gaussian random variable. The characteristic function of X can be found
as follows:

2 g
==
D, (w)= e 2e/™dx
X ) N27
df)‘ 1 _x2—2 Jjox
= e 2 dx
) N27
We complete the square in the exponent to get
W0 o)
D y(w)=e 2 e 2 dx

The integrand in the last expression above looks like the PDF of a unit variance Gaussian random
variable with a mean of jw, and since the integral is over all values of x, the integration must be

unity. However, since x is a real random variable, it cannot have a complex mean, and the above
argument is mathematically wrong.

Nevertheless, with some mathematical manipulations, the integral above can be shown to produce
an answer of unity. The resulting characteristic function is

0)2

d)X(a)):e_7

It can be shown that for a Gaussian random variable with a mean of & and a variance of o 2 the
characteristic function is

III.6-Characteristic Functions
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w’c?

Jou—
O y(w)=e 2

d d OO jwx
%q)x(w)%[ [e fX(x)de

—0

o0

= J;—w(eij)f)((x)dx

—0o0

0

= | e ()

L (@)= [ vy ()
dw

—0o0

d
—j—0 (v
]da) x (@)

= T xf v (x)dx

=0
=E[X]
For any random variable whose characteristic function is differentiable at @ =0,

d

E[X]=- j%db x () o (111.23)
k
E[X"} — (=¥ ;7q> (@) ) (I11.24)

Example I11.19

Suppose Y is an exponential random variable with the PDF f (v) = ae”“u(y) . The characteristic
function of Y is (see Example I11.16):

a
Dy (w)=—-
a—jow
The 1% derivative of @ y(®) is
d ja
Loy @)=—~>"
do " (a- jo)?

III.6-Characteristic Functions
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Thus, the 1% moment is

E[Y]:—jicpy(a)

do 0=0
B a
(a—jo)?|
_L
a
Note that the & th derivative of ® () 1s
k k)
L@y (@)=—L 0
dw (a—jo)
Thus, the % th moment is
k p d*
B[r*|=nf oy
=0
B kla
a . Nkl
(a - ]a)) w=0
k!
ak

Specifically, suppose the characteristic function is expanded in the form

D (@)= go" (111.25)
k=0
Then,
k| _ ~k
E[X }_(— NEkig, (I11.26)
Example I11.20

Consider a zero-mean Gaussian random variable X with variance & 2. The characteristic function
of X is (see Example III.18):

oo’

Dy (@)=e 2

Using Taylor series expansion,

III.6-Characteristic Functions
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0'2602 "

)

O y@=3
=0 n:

III: Operations on a Single Random Variable

_y D o
n=0 211”'

The coefficients of the power series expansion in (II1.25) are given by
- k

.k @

(&)

O = (kjv ’
5

0, k odd

k even

Using (I11.26),

I11.7. Moment Generating Functions (MGF)

The moment generating function M y (1) of a nonnegative random variable X is
g(X)=e"

MX(u)zE[e”X]

w (111.27)
= [ fx(x)e dx
0
v dF
E[X ]_du—kM @) » (I11.28)

III. 7-Moment Generating Functions (MGF)
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« E| X
MX(M):kZ' [k! }uk
=0 (I11.29)

0
= kauk
k=0

Example I111.21

Consider an Erlang random variable with a PDF of the form

n-1_ —x
x" e
xX)=—u(x
Fr ()= )
My () =—
1w
The first two moments are found as follows:
Elx]=L 1
du(l—u) 0
B n
T ntl
(1-u)""|
=n
2
E[Xz}:d_z ln
du” (I-u)™| _,
_ n(n+1)
T \n+2
A-u)""|
=n(n+1)

Using the first two moments, the variance can be found to be equal to

o2 :E[Xz}—(E[X])z

_y2_j2
:I’l(l’l+1)—l’12
=n

The & th moments is found to be equal to

III. 7-Moment Generating Functions (MGF)
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df 1
E [X "} S _
du” (1-u)"| _,
=n(n+1)---(n+k-1)
_(n+k-1)!
(n-1)!

Theorem II1.2

Markov Inequality

Suppose that X is a nonnegative random variable, then

E[X]

X0

Pr(X >x;)<

Proof:

For nonnegative random variables, the expected value is

E[X]: J-fo(x)dx
0

= ffo (x)dx + T xf y (x)dx
0

X0

> T xf y (x)dx

X0

> x, j fx (0)dx

X0

=Xy Pr(XZXO)

Example I11.22

Suppose that the average life span of a person was 75 years. The probability of a person living to
be 110 years old would then be bounded by

Pr(ino)sE
110

=0.6818

Of course, we know that in fact very few people live to be 110 years old, and hence, this bound is
almost useless to us.

III. 7-Moment Generating Functions (MGF)
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Theorem II1.3

Chebyshev’s Inequality

Let X be a random with mean x y and variance o )2( . The probability that X takes on a value

that is removed from the mean by more than x, is given by

Pr(|X—yX|2x0)£

= ‘Q
S D

Proof:

Chebyshev’s inequality is a direct result of Markov’s inequality. Note that the event
{|X —pyx|> xo} is equivalent to the event {(X —ly) 2> xé} . Applying Markov’s inequality to

the latter event results in

Pr((X—,uX)Zng)S >
X0

_ox

xq

Note that Chebyshev’s inequality gives a bound on the two-sided tail probability, whereas
Markov’s inequality applies to the one-sided tail probability. Also, Chebyshev’s inequality can be
applied to any random variable, and not only to non-negative random variables.

EXAMPLE 4.27: Continuing the previous example, suppose that in
addition to a mean of 75 years, the human life span had a standard
deviation of 5 years. In this case,

Pr(X > 110) < Pr(X > 110) 4+ Pr(X < 40) = Pr(|X — 75| > 35).
Now the Chebyshev inequality can be applied to give

Pr(|X — 75| > 35) < 5 2—1
- —\35) " 49’

While this result may still be quite loose, by using the extra piece of
information provided by the variance, a better bound is obtained.

kokok
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III. 7-Moment Generating Functions (MGF)
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1V: Pairs of Random Variables
IV. PAIRS OF RANDOM VARIABLES
1V.1. Joint Cumulative Distribution Functions
Definition IV-1
The joint cumulative distribution function of a pair of random variables X and Y is
Fyy(x,y)=Pr(X <x,Y<y) (IV.1)
That is, the joint CDF is the joint probability of the two events {X < x} and {Y < y} .
IV.1.A. JOINT CDF PROPERTIES
0<Fyy(x,y)<I1 (IV.2)
Fyy(=0,y)=Fy y(x,—0)=Fy y(-0,—00) =0 (Iv.3)
Fy y(o0,0)=1 (Iv.4)
Fyy(o0,y)=Fy(y)
*r ! (IV.5)

FX,Y(X, o) = Fy(x)

For x;<x, and y;<y,, {X<x;}n{Y <y} is a subset of {X<x,}N{Y<y,} so that

Fyy(xp,01)SFyy(x5,7).

Fy (x) and Fy ( y) are referred to as the marginal CDFs of X and Y, respectively.

(x3.52)

(12;)" i )

IV.1-Joint Cumulative Distribution Functions
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Fyy(xpy1)SFyy(x5,9,)

Pr(xl <XSX2,y1 <Y3y2)

=Fyy(x2,02)-Fyxy(x1,02)-Fx y(x0, )+ Fy y(x1, 1) (IV.6)
>0

EXAMPLE 5.1: One of the simplest examples (conceptually) of a pair
of random variables is one that is uniformly distributed over the unit
square (i.e.,,0 < x < 1,0 <y < 1). The CDF of such a random variable is

0 x<Oory<0

x 0<x<1ly>1
Fxyx,y) =1y x>1,0<y<1
xwy 0<x<10=<y<l1

1 x>1,y>1

Even this very simple example leads to a rather cumbersome function.
Nevertheless, it is straightforward to verify that this function does
indeed satisfy all the properties of a joint CDF. From this joint CDF,
the marginal CDF of X can be found to be

0 x<0O
Fx(x) =Fxy(x,00)={x 0<x<1
1 x>1

Hence, the marginal CDF of X is also a uniform distribution. The same
statement holds for Y as well.

IV.2. Joint Probability Density Functions

Definition 1V-2

The joint probability density function of a pair of random variables X and Y evaluated at the
point (x, y) is given by

2

fX,Y(x,y>=£—ay v (5) av.7)
Based on (IV.7),
Yy x
Fyyon)=| | fxy(a pdadp (IV.8)

—00 —00

IV.2-Joint Probability Density Functions
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EXAMPLE 5.2: From the joint CDF given in Example 5.1, it is easily
found (by differentiating the joint CDF with respect to both x and v)
that the joint PDF for a pair of random variables uniformly distributed

over the unit square is

,&y&m):{o

otherwise

Note how much simpler the joint PDF is to specify than is the joint CDF.

1 0<x<10<y<l1

IV.2.A. JOINT PDF PROPERTIES

fX,Y(xay)ZO

o0 o0

I I fxy(x,y)dxdy =1

—00 —00

[C O o

= [ [ Sy (e y)dedy

—00 —00

Sx () :diFX(x)fY(y)
x

=If&ﬂ%w@

—00

Sr(»)= J. fX,Y (x, y)dx

X2 Y2

Pr(x; <X <x,,y;<Y<y,)= j JfX’Y(x,y)dxdy

X1 V1

Pr((X, Y)e A) = J] S x.y(x,y)dxdy
A

(IV.9)

(IV.10)

(IV.11)

(IV.12)

(IV.13)

(IV.14)

IV.2-Joint Probability Density Functions
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Example IV.1

Suppose X and Y are jointly uniformly distributed over the unit circle (7 =1). Thatis, fy y(x,»)

is equal to a constant ¢ over all the points (x, y) that satisfy x2+ y2 <I:

2 2
c, x“+y°<1
)= >
0, otherwise
crr? =1

The constant ¢ can be found as follows:

H cdxdy =1
x2+y2=1
1
c=—
T

1—x
4 J' dy
7[— 1-x?
22 l—xz, |x|£1
V4

Example 1V.2
Let
_x2+y2
fxy,y)=—e 2
2
2 2
L, L,y
= e e

2z 2r

The probability that the point (x, y) falls inside the unit circle is calculated as follows:

IV.2-Joint Probability Density Functions
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2, y2 o L 2
Pr(X “+Y Sl)—2 ” e dxdy

Pr(X2+Y231)=ij
2r :

EXAMPLE 5.5: Now suppose that a pair of random variables has the
joint PDF given by

fxy(x,y) = Cexp(—x - %) u()uy).

First, the constant ¢ is found using the normalization integral

fofocexp(x z)dxdyglécMz‘

Next, suppose we wish to determine the probability of the event
{X > Y}. This can be viewed as finding the probability of the pair (X, Y)
falling in the region A that is now defined as A = {(x,y):x > y}. This
probability is calculated as

Pr(X > Y) = f[fX,Y(X,y)dxdy _fo fy Eexp(fx - E) dxdy

x=y

< 3y 1
=
2
Y

= e_xu(x)%e_zu(y)

Fiy () =%e u(u(y)

IV.2-Joint Probability Density Functions
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Definition IV-3

The joint probability mass function for a pair of discrete random variables X and Y is given by
Pyy(Xp,yn)= Pr({X = xm}m {Y = yn})

IV.2.B. PMF PROPERTIES
0<Pyy(x,,y,) <1 (IVv.15)
M N
DD Pyry (X y,) =1 (IV.16)
m=1n=1
N
D Pyy(x,, ) =Py (x,) (IV.17)
n=l1
M
2 Pyy (s y)=Pr(y,) (IV.18)
m=l
Pr((X.Y)ed)= > Pyy(x,») (IV.19)
(x,y)ed
Example
Let X be the number on the upper face of a fair die after throwing it. Let ¥ be the number on the
upper face of another fair die after throwing it. Let event

A={X <3,Y iseven} ={(1,2),(2,2),(1,4),(2,4),(1,6),(2,6)} .

Pr((X,Y)eA):%:%.
M N
Fxr )= Py y(xp ¥, )8(x=x,)5(y=,) (IV.20)
m=1n=1
M N
Fyy(x,0) =2 Pyy(,y u(x—x,u(y-y,) (Iv.21)
m=1 n=1

IV.2-Joint Probability Density Functions
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EXAMPLE 5.7: A pair of discrete random variables N and M have a
joint PMF given by

(n+m)! ap™
nm! (a+ b+ 1)rtm+l’

Pnm(n,m)= m=0,1,2,3,..., n=0,1,2,3,....

The marginal PMF of N can be found by summing over m in the
joint PMF:

00 9]
(1 + m)! atpm
Pn(n) = Z PN,M(H, m) = Z n'm! @+b+ 1)n+m+l '
m=0

m=0
To evaluate this series, the following identity is used:
oo

Z (n+ m)!xm _ 1 7l
nlm! “\1-x ’

m=0

The marginal PMF then reduces to

Pr(n) = a” 2, (n+m)! b
M T @b+ = Tam @b+ D
n+1
al‘l 1 al‘l
- (@a+b+ 1)+l 1 b - 1 +a)nt1”

\" a+b+1/
Likewise, by symmetry, the marginal PMF of M is

bm

Pl = Gy

Hence, the random variables M and N both follow a geometric
distribution.

1V.3. Conditional CDFs, PMFs and PDFs

I1V.3.A. DISCRETE RANDOM VARIABLES
Pr(X:x|Y:y):Pr(X=x’Y=y)
Pr(Y = y)
(Iv.22)
P (x|y)_PX,Y(xay)
XY S —
| Py(y)

1V.3-Conditional CDFs, PMFs and PDFs
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EXAMPLE 5.8: Using the joint PMF given in Example 5.7, along with
the marginal PMF found in that example, it is found that

pM,N(m,n) o (n +m)! apm €1 4 b)’"‘”
Pp(m) T onm! (a+ b+ 1)r+m+l pm

_(n+m)! a1+ prl
T Taml @+ b+ Dy

Pnm(nim) =

Note that the conditional PMF of N given M is quite different than
the marginal PMF of N. That is, knowing M changes the distribu-
tion of N.

1V.3.B. CONTINUOUS RANDOM VARIABLES

fX Y(x:y)
= V.23
Sxy (x[y) 70 ( )

EXAMPLE 5.9: A certain pair of random variables has a joint PDF
given by

2abc
(ax + by + c)3

for some positive constants a, b, and c. The marginal PDFs are easily
found to be

fxy(x,y) = u(uy)

fx(®) = f fax(x, y) dy = @)
0

ac
—u
(ax + ¢)?
and

s be
fry) = /(; fxy(x,y)dx = W uy).

The conditional PDF of X given Y then works out to be

fxy(x,y) 2a(by + c)?
(x ) — 4 =
fxir(xly @ (ax + by + ¢)3 "
The conditional PDF of Y given X could also be determined in a
similar way:

(x).

fxy(,y)  2blax + c)?
fx(x)  (ax+by +c)

frix(ylx) = u(y).

1V.4. Expected Values Involving Joint Random Variables

E[g(X,1)]= [ [ gCen)fxy(xy)dxdy (IV.24)

—00 —00

For discrete random variables,
E[g(X,N]=2.2 800 y) Py y (K> ¥ 1) (IV.25)
m n

1V.4-Expected Values Involving Joint Random
Variables
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Definition 1V-4

85

The correlation between two random variables is defined as

Ryy=E[XY]
< < (IV.26)
= [ [ % xy (x, y)dxdy
Two random variables that have a correlation of zero are said to be orthogonal.
Definition IV-5
The covariance between two random variables is
Cov(X,Y)=E[(X - Y-
( ) [( Hx ) /UY)] (IV.27)
= RX,Y ~“HxHy
Definition IV-6
The correlation coefficient of two random variables is defined as
X,Y
Xy = M (IV.28)
O xOy
1P xy| <1 (IV.29)
E[g(X)|Y]= [ g(0)fxpy (x| p)dx (IV.30)
Definition IV-7
The joint characteristic function is defined as
Dy y(@),0,) = E[ej (@1 X+t )} (IV.31)
o" o"
ElX"Y" |=(=)H)""—— Dy (w,0,) (IV.32)
[ } ow{" dw)y L 2‘ 1
Definition IV-8
The joint MGF is defined as
MX’Y(UI,Uz):E[eulX-}_qu} (IV33)

1V.4-Expected Values Involving Joint Random

Variables
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o" a"
E| X™y" |= M , V.34
[ } Oui" Ouy xrl uz>‘“1=“z=0 ( )
If E[XY]=E[X]E[Y], then X and Y are uncorrelated.
If E[XY]=0,then X and Y are orthogonal.
1V.5. Independent Random Variables
Fyy(x,y)=Pr(X <x,Y <y)
=Pr(X <x)Pr(Y < y) (IV.35)
=Fy(x)Fy(»)
Sxyey)=1xx)fy(y) (IV.36)
Note that when X and Y are independent then
fX Y(x’ y)
Fxy(xly)=—"F—7"
o Sy (IV.37)
= fx(x)
and
E[XY]|=E[X]E[Y] (IV.38)
Ryy=E[X]E[Y]
=XY (IV.39)
=HxHy
X, Y)=R -
Cov(X,Y)=Ryy—HuxHy (IV.40)
=0

1V.5-Independent Random Variables
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Theorem IV.1

EXAMPLE 5.13: Returning once again to the joint PDF of Example 5.10,
we saw in that example that the marginal PDF of X is

fx(x) = L ex —ﬁ
= V2 P\72 )
while the conditional PDF of X given Y is

2 2 y 2
fxiy(&xly) =/ gexp(—5 (x - E) ) i

Clearly, these two random variables are not independent.

EXAMPLE 5.14: Suppose the random variables X and Y are uniformly
distributed on the square defined by 0 < x,y < 1. That is

1 0<x,y<l1
(x,y) = - .
frx ey {O otherwise
The marginal PDFs of X and Y work out to be
1 0<x<1 1 0<sy=<1
(x) = =g (y) = ==
fx {O otherwise frly {O otherwise

These random variables are statistically independent since fx y(x,y) =

fx(Ofy ).

Let X and Y be two independent random variables and consider forming two new random
variables U;=g(X) and U, =g,(Y). These new random variables U, and U, are also

independent.

1IV.6. Transformations of Pairs of Random Variables

IV.6.A.

PDF OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES

Let Z=X+Y, then

(DZ(a)):E_ej”Z}

:E: e ja)(X+Y)}
. (IV.41)
:E_eja)X:|E|:eja)Y:|

=D y (@) y(w)

1V.6-Transformations of Pairs of Random
Variables
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Then

f72(2)=fx(2)* fy(2)
i3 (IV.42)
= [ fx(z=9)fy(&)d

EXAMPLE 5.20: Suppose X and Y are independent and both have
exponential distributions,

fx(x) = aexp(—ax)u(x), fr(y) = bexp(=by)u(y).

The PDF of Z = X + Y is then found by performing the necessary
convolution:

fz(Z)=/ fx(z—y)fy(y)dy=ab/ exp(—a(z—y))exp(—by)u(z—y)u(y)dy

=abe " / ’ exp((a—b)y) dyu(z)
0

y=z
_ ab |:e—aze(a—b)y

T a—b

y=0:| u(z)= a_bb [e_b}/ —e_”z] u(z).

This result is valid assuming that a # b. If 2 = b, then the convolution
works out to be

f2(2) = a’ze"u(2).

1V.6.B. PDF OF FUNCTIONS OF TWO INDEPENDENT RANDOM VARIABLES

Let Z=g(X,Y), then

® (@)= E| /5 |

w o (IV.43)
= | [ &0 ey (e )y

Then

f7(2)=F (0}

0 . (IV.44)
_ L j D ,(w)e ' dw
2z .

1V.6-Transformations of Pairs of Random
Variables
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EXAMPLE 5.21: Suppose X and Y are independent, zero-mean, unit
variance Gaussian random variables. The PDF of Z = X? + Y?
can be found using either of the methods described thus far. Using
characteristic functions,

@7(@) = E[elX )] = E[efX |E[eV"].

The expected values are evaluated as follows:

E[e]wXZ] /oo 1 ](u\’ —x%/2 dx
[e.9] V

/ [1-2jw 2]‘0 o= (1-2j0)02/2 g, _
,/1—2]w ,/1—2]60

The last step is accomplished using the normalization integral for
Gaussian functions. The other expected value is identical to the first
since X and Y have identical distributions. Hence,

26 )
7\) = . — =
? JT-20) — 1-2jw

The PDF is found from the inverse Fourier transform to be

fz(2) = —exp(—g) u(x).

EXAMPLE 5.22: Suppose X and Y are independent zero-mean, unit-
variance Gaussian random variables and we want to find the PDF of
Z = Y/X. Conditioned on X = x, the transformation Z = Y /x is a
simple linear transformation and

V2 2

Multiplying the conditional PDF by the marginal PDF of X and
integrating out x gives the desired marginal PDF of Z.

00 00 2.2 2
fz(z)=/;oofz|x(z|x)fx(x)dx=/_oo%exp(—%) %exp(—%) dx
Y (1+x?)2?
& e 2222).

1/°° ( (1+z2)x2)d 1 1
)y P 2 12

Next, our attention moves to solving a slightly more general class of problems. Given two random
variables X and Y, suppose we now create two new random variables ' and Z according to
some 2x2 transformation of the general form

2,2
fzix(zlx) = |x|fy(xz) = L exp(—ﬁ) .

1V.6-Transformations of Pairs of Random
Variables
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Z=g(X,Y)
W=g,(X,Y)

()

Szw(z,w)= fX,Y(xa »)

:fX,Y(xay)

z w

2 %)

Xy
_@ 8_y_
J(x yjzdet 0z Oz
:w) o
LOow Ow |
_% 8_2_
r z w _ det ox Oy
x o ow
| Ox Oy |

EXAMPLE 5.23: A classical example of this type of problem involves
the transformation of two independent Gaussian random variables
from Cartesian to polar coordinates. Suppose

1 x4y
2mo2 P\ 202 )°
We seek the PDF of the polar magnitude and phase given by
R=vVX?2+Y?,

O = tan  }(Y/X).

fxyx,y) =

90

(IV.45)

(IV.46)

(IV.47)

(IV.48)

1V.6-Transformations of Pairs of Random

Variables
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The inverse transformation is
X = Rcos(®),
Y = Rsin(®).

In this case, the inverse transformation takes on a simpler functional

form and so we elect to use this form to compute the Jacobian.
ox 0x
or 90 cos(f) —rsin(9)
](x y)=det ' = det
r ¢ dy Yy sin(@)  rcos(f)
ar 960

=rcos?(6) + rsin®(@) =r

The joint PDF of R and © is then

fro(r,0) = fiy(x,y) ‘I (f Z)

x = hy(r,0)

y =hy(r,0)
r x2 + y2
= 5 exp s >
2o 20 .
x = rcos(6)
y = rsin(9)

_ r2 r>0
_ZnazeXp 202 )" 0<60 <27

Note that in these calculations, we do not have to worry about taking
the absolute value of the Jacobian since for this problem the Jacobian
(= r) is always nonnegative. If we were interested, we could also find

the marginal distributions of R and © to be

2

r r 1
fr(r) = = exp(—ﬁ) u(r) and fe(f) = o 0<6 <2n.

The magnitude follows a Rayleigh distribution while the phase is

uniformly distributed over (0, 27).

skskosk
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1V.6-Transformations of Pairs of Random

Variables
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V: Random Processes

V. RANDOM PROCESSES

V.1. Introduction

Definition V-1

A random process is a function of the elements of a sample space S, as well as another independent
variable 7. Given an experiment £ with sample space S, the random process X (1) maps each

possible outcome & € S to a function x(¢,&) as specified by some rule.

Example V.1

Suppose an experiment consists of flipping a coin. If the outcome is heads & = H , the random
process takes on the functional form x g (¢) =sin(@t) ; whereas if the outcome is tails & =T, the

realization x7(¢) =sin(2wgt) occurs.

Example V.2

Now suppose that an experiment results in a random variable A that is uniformly distributed over
[0,1). A random process is then constructed according to X (¢) = Asin(@t) . Since the random

variable is continuous, there are an uncountably infinite number of realizations of the random
process.

The mean value of X (¢) is calculated as follows:

E[X(t)] = E[4sin(y1)]
=E[A]sin(wt)

I .
= —sin(wt
5 ol

Example V.3

Consider the experiment of rolling a standard die and assigning the number on the top face to
random variable Z. Let a discrete random sequence be defined as X (n) = X(n—1)+ Z , where

X (0)=0. A possible realization of X (n) is x(n)=0,3,4,10,12,17,---.

Exercise V.1

e Determine the mean value of X (n) in Example V.3 above.

E[X(n)]=E[X(n-1)+Z]
=E[X(n-1)]+E[Z]

E[X(0)]=0

V.1-Introduction




Mohammad M. Banat - EE 360: Random Signal Analysis 93

V: Random Processes

E[X()]=E[X(0)]+E[Z]
=E[2]
=35
E[X(2)]=E[X()]+E[Z]
=3.5+E[Z]
=7
E[X(n)] =3.5n

e Determine the mean square value of X (n) in Example V.3 above.

e Determine the variance of X (n) in Example V.3 above.

e Replace Z in Example V.3 above with a uniform discrete random variable that takes its values
from the set {il,i3} , then determine the mean, mean square and variance of X (n) .

Example V.4

. . . . 2
Let Z,, be a Gaussian random variable with a mean x,, and a variance 0,,, for m =0,1,2,---.

n—1

Let a random sequence be defined as X (n) = Z Z,, . The PDF of X (n) is Gaussian with a mean
m=0
n—1 n—1 ’ ’
Hxny = z M, and a variance 0'3((”) = z ol If u, =u and o, =0" (both are constants),
m=0 m=0

then the PDF of the random process X (n) is

_G-nw)®
2

1

Sx(x)= —,—27[}’16 5

e 2no

V.1-Introduction
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Definition V-2

EXAMPLE 8.10: Now suppose the random process of the previous
example is slightly modified. In particular, consider a sine-wave pro-
cess where the random variable is the phase, ®, which is uniformly
distributed over [0, 27). That is, X(t) = asin(w,f + ©). For this example,
the amplitude of the sine wave, g, is taken to be fixed (not random). The
mean function is then

ux(D) = E[X()] = E[asin(w,t + ©)] = a f fo®) sin(et + 0)do

27

& sin(w,t +0)d6 =0,

which is a constant. Why is the mean function of the previous example

a function of time and this one is not? Consider the member functions
of the respective ensembles for the two random processes.

94

The autocorrelation function R yy (7;,7,) = E[ X (¢;) X (¢,)] of a continuous random process X (1)

1s defined as

Ry (t1,15) =E[X (1)) X (t5)]

o 00
= I Ix1x2fX1,X2(xlaxz;tlatz)dxldx2

—00 —00

(V.1)

V.1-Introduction
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EXAMPLE 8.12: Consider the sine wave process with a uniformly dis-
tributed amplitude as described in Examples 8.2 and 8.9, where X(t) =
A sin(wyt). The autocorrelation function is found as

Rxx(t1, 1) = E[X(t1)X(t2)] = E[A? sin(wot1) sin(wota)]
= % sin(w0t1) Sin(wotZ)/
or

Rxx(t.t + 1) = %Sin(wgt) sin(w,(t + 1)).

EXAMPLE 8.13: Now consider the sine wave process with random
phase of Example 8.10 where X(t) = asin(wot + ®). Then

Rxx(t, 1) = E[X(t1)X(t2)] = E[a* sin(wot1 + ) sin(w,ta + 0)].

To aid in calculating this expected value, we use the trigonometric
identity

sin(x) sin(y) = % cos(x —y) — % cos(x + y).

The autocorrelation then simplifies to

2 2
Rxx(t1, 1) = %E[cos(wo(tz — 8N+ %E[cos(wo(tl + ty +20))]

aZ
= 7 cos(wy(tr — 1)),

or

2
Rxx(t,t+1) = % cos(w,1).

When

1. E[X ()] is not function of 7, and
2. Ry x(t,t+7) function of only 7,

The process is classified as wide-sense stationary (WSS).

V.1-Introduction




Mohammad M. Banat - EE 360: Random Signal Analysis 96

V: Random Processes

DEFINITION 8.4: The autocovariance function, Cxx(f1, f2), of a continuous time
random process, X(t), is defined as the covariance of X(t1) and X(¢,):

Cxx(t1,t2) = Cov(X(t1), X(t2)) = E[(X(t1) — ux(t1))(X(t2) — ux(t2))]. (8.6)

The definition is easily extended to discrete time random processes.

As with the covariance function for random variables, the autocovariance
function can be written in terms of the autocorrelation function and the mean
function:

Cxx(t1,t2) = Rxx(ty,t2) — ux(t)ux t2). 8.7)

DEFINITION 8.5: For a pair of random processes X(t) and Y (t), the crosscorrela-
tion function is defined as

Rxy(t1,t2) = E[X(t)Y (t2)]. (8.10)

Likewise, the cross-covariance function is

Cxy(t, t2) = E[(X(t1) — ux(E))(Y(t2) — py (t2)]. 8.11)

EXAMPLE 8.15: Suppose X(t) is a zero-mean random process with
autocorrelation function Rxx(t1,f2). A new process Y (t) is formed by
delaying X(f) by some amount t;. That is, Y(t) = X(t — t;). Then the
crosscorrelation function is

Rxy(t1,t2) = E[X(t1)Y (t2)] = E[X(+1)X(t2 — tg)] = Rxx(t1,t2 — tg).

In a similar fashion, it is seen that Ryx(f1,t) = Rxx(t; — t4,t2) and
Ryy(t, t2) = Rxx(t1 — tq, t2 — t).

DEFINITION 8.4: The autocovariance function, Cxx(t1, f2), of a continuous time
random process, X(t), is defined as the covariance of X(¢1) and X(¢,):

Cxx(t1,t2) = Cov(X(t1), X(t2)) = E[(X(t1) — ux(t1))(X(t2) — ux(t2))]. (8.6)

The definition is easily extended to discrete time random processes.
As with the covariance function for random variables, the autocovariance
function can be written in terms of the autocorrelation function and the mean

function:

Cxx(t1,t2) = Rxx(ty, t2) — ux(t)ux (t2). (8.7)

V.1-Introduction
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DEFINITION 8.5: For a pair of random processes X(t) and Y (¢), the crosscorrela-
tion function is defined as

Rxy(t1,t2) = E[X(t1)Y (£2)]. (8.10)

Likewise, the cross-covariance function is

Cxy(t, t2) = E[(X(t1) — ux(t))(Y(t2) — py (t2))]. (8.11)

EXAMPLE 8.15: Suppose X(f) is a zero-mean random process with
autocorrelation function Rxx(t1,f2). A new process Y (t) is formed by
delaying X(t) by some amount t4. That is, Y () = X(t — t4). Then the
crosscorrelation function is

Rxy(ty, t2) = E[X(t1)Y (t2)] = E[X(+1)X(t2 — tg)] = Rxx(t1,t2 — ty).

In a similar fashion, it is seen that Ryx(t,tp) = Rxx(t1 — tg,t2) and
Ryy(ty, t2) = Rxx(t1 — tg,t2 — t).

If the crosscorrelation is zero, the processes are orthogonal.

V.2. Stationary and Ergodic Random Processes

DEFINITION 8.6: A continuous time random process X(t) is strict sense stationary
if the statistics of the process are invariant to a time shift. Specifically, for any time
shift r and any integer n > 1,

le,Xz,...,X” (xll x2/ ey xﬂ; tli t21 LR 4 tﬂ)

= le,Xz ..... X”(xlle/ ceerXn, tl + 7, t2 +7z,..., t” + T)- (812)

DEFINITION 8.7: A random process is wide sense stationary (WSS) if the mean
function and autocorrelation function are invariant to a time shift. In particular,
this implies that

ux(t) = ux = constant, (8.14)

Rxx(t,t + 1) = Rxx(r) (function only of 7). (8.15)

All strict sense stationary random processes are also WSS, provided that the mean
and autocorrelation function exist. The converse is not true. A WSS process does

not necessarily need to be stationary in the strict sense. We refer to a process that
is not WSS as nonstationary.

V.2-Stationary and Ergodic Random Processes
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EXAMPLE 8.17: Suppose we form a random process Y(t) by modu-
lating a carrier with another random process, X(t). That is, let Y(t) =
X () cos(w,t +®) where O is uniformly distributed over [0, 27) and inde-
pendent of X(#). Under what conditions is Y () WSS? To answer this,
we calculate the mean and autocorrelation function of Y (t).

uy () = E[X(t) cos(wot + ©)] = E[X(H)]E[cos(w,t + ©)] = 0;

Ryy(t,t+1)=E[X()X(t+ 1) cos(wot) cos(w,(t+1))]
=E[X(HOX({t+71)] [ % cos(w,t)+ %E[cos(wo(2t+ 7)+20)] l
= IRxx(t,t+7) cos(wo7)

While the mean function is a constant, the autocorrelation is not neces-
sarily only a function of t. The process Y (t) will be WSS provided that
Rxx(t, t+1) = Rxx(7). Certainly if X(t) is WSS, then Y (t) will be as well.

EXAMPLE 8.18: Let X(t) = At + B where A and B are independent
random variables, both uniformly distributed over the interval (—1, 1).
To determine whether this process is WSS, calculate the mean and
autocorrelation functions:

px(t) = E[At + B] = E[A]t + E[B] = 0;

Rxx(t,t + 7) = E[(At + B)(A(t + 1) + B)]
= E[A?|H(t + ) + E[B?] + E[AB](2t + ) = 3t(t + 7) + 1.

Clearly, this process is not WSS.

DEFINITION 8.8: A WSS random process is ergodic if ensemble averages involving the process
can be calculated using time averages of any realization of the process. Two limited forms of
ergodicity are

(1) ergodic in the mean: (x(¢))=E[x(1)] ;

(2) ergodic in the autocorrelation: (x(r)x(t+7)) = E [x(t)x(t+7)].

V.2-Stationary and Ergodic Random Processes




Mohammad M. Banat — EE 360: Random Signal Analysis

V: Random Processes

EXAMPLE 8.20: Now consider the sinusoid with random phase X(t) =
asin(w,t + ®), where © is uniform over [0, 27). It was demonstrated
in Example 8.13 that this process is WSS. But is it ergodic? Given any
realization x(t) = asin(wot + 0), the time average is (x(t)) = (a sin(w,t +
0)) = 0. Thatis, the average value of any sinusoid is zero. So this process
is ergodic in the mean since the ensemble average of this process was
also zero. Next, consider the sample autocorrelation function:

(x(Dx(t + 7)) = a? (sin(wot + 0) sin(wot + wot + 6))
a 2 2

= E(Cos(wor)) - %(COS(Zth + wot +20)) = % cos(w,T).

N

This also is exactly the same expression obtained for the ensemble averaged
function. Hence, this process is also ergodic in the autocorrelation.

V.3. Properties of the Autocorrelation Function

Ry (0)=E| X°(1)]
=Py

Ryx (1) =R xx (-7)
IR yx ()| < R xx (0)

EXAMPLE 8.23: Consider the random process X(f) = A cos(w,t) +
B sin(w,t), where A and B are independent, zero-mean Gaussian random
variables with equal variances of 2. This random process is formed as a
linear combination of two Gaussian random variables, and hence sam-
ples of this process are also Gaussian random variables. The mean and
autocorrelation functions of this process are found as

ux(t) = E[A cos(wot) + Bsin(wyt)] = E[A] cos(wot) + E[B] sin(w,t) = 0,
Rxxa(ty, t2) = E[(A cos(wyt1) + Bsin(w,t1))(A cos(wots) + B sin(wotr))]

= E[A?] cos(woty) cos(wotz) + E[B?] sin(woty) sin(wots)
+ E[AB]{cos(wot1) sin(wotz) + sin(wot1) cos(wotz)}

= 02{cos(wpty) cos(woty) + sin(wty) sin(wyta)}

= 0% cos(wy(ty — t)).

Note that this process is WSS since the mean is constant and the autocor-
relation function depends only on the time difference. Since the process
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autocorrelation

(V.2)

(V.3)

(V.4)

V.3-Properties of the Autocorrelation Function
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is zero-mean, the first order PDF is that of a zero-mean Gaussian random
variable:

&ty =

This PDF is independent of time as would be expected for a stationary
random process. Now consider the joint PDF of two samples, X1 = X(t)
and Xp = X(t + 7). Since the process is zero-mean, the mean vector is
simply the all-zeros vector. The covariance matrix is then of the form

_ 2 [ 1 cos(a)or)] '

cos(wyt) 1

C _[RXX(O) Rxx(f)]
XX = Rxx(‘r) Rxx(O)

The joint PDF of the two samples would then be

2 2
x5 —2x1%2 cos(w,T) + X
fxi, %, (1, %054, 8 +7) = ! > 2 ).

2702 sin(w, )| p( 202sin%(w, 1)

Note once again that this joint PDF is dependent only on time difference,
7, and not on absolute time t. Higher order joint PDFs could be worked
out in a similar manner.

V.4. Power Spectral Density

THEOREM 10.1 (Wiener-Khintchine-Einstein): For a wide sense stationary
(WSS) random process X(t) whose autocorrelation function is given by Rxx(7),
the PSD of the process is

Sxx(f) = ERyx(z)) = / Ryx (2)e =2 dr. (10.13)

In other words, the autocorrelation function and PSD form a Fourier transform
pair.

EXAMPLE 10.2: Let us revisit the random sinusoidal process, X(t) =
A sin(wot + ©), of Example 10.1. This time the PSD function will be
calculated by first finding the autocorrelation function.

Rxx(t,t + 1) = E[X(O)X(t + )] = E[A? sin(w,t + ©) sin(w,(t + ) + O)]

= %E[AZ]E[COS(COD‘L’) — cos(w,(2t + 1) +20)] = %E[Az] cos(w,T)

V.4-Power Spectral Density




