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SYLLABUS 

Course Catalog 

3 Credit hours (3 h lectures). Probability principles and set theory. Random variables. Operations on random variables. 
Various distribution functions. Random processes: temporal and spectral characterization. Response of linear time-
invariant systems to random inputs. 

Textbook 

Peyton Z. Peebles (2001).  Probability, Random Variables and Random Signal Principles, 4th  ed. McGraw Hill. 

References 

1. Roy D. Yates and David J. Goodman (2004). Probability and stochastic processes. 2nd ed. Wiley. 
2. Leon-Garcia (2008). Probability and Random Processes for Electrical Engineering. 3nd ed. Prentice Hall. 
3. Geoffrey Grimmett and David Stirzaker (2001). Probability and Random Processes. 3nd ed. Oxford 

University Press. 

Instructor 

Name:  Dr. Mohammad M. Banat 

Email Address:  banat@just.edu.jo  

Prerequisites 

Prerequisites by topic Calculus, Signal Analysis 

Prerequisites by course Math 102, EE 260 

Prerequisite for EE 450 

Topics Covered 

Week Topics Chepters in Text 
1-2 Introduction to Probability Theory 2 
3-6 Random Variables and Distribution and Density Functions 3 
7 Operations on a Single Random Variables 4 

8-9 Multiple Random Variables 5 
10-12 Operations on Multiple Random Variables 6 
12-14 Random Processes 7 
15-16 Spectral Analysis and Filtering of Random Processes 8 
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Objectives and Outcomes 

Objectives Outcomes 

1. Know and apply the basic 
probability principles [a] 

1.1. Recognize the role of probability in science and engineering [a] 
1.2. Understand basics of set theory [a] 
1.3. Understand the axioms of probability [a] 

2. Know and apply the basic 
principles concerning single 
and multiple Random 
Variables [a] 

2.1. Understand the concepts of discrete and continuous single and 
multiple random variables [a] 

2.2. Understand the concepts of distribution and density functions [a] 
2.3. Understand and apply the concepts of moments and moment 

generating functions [a] 
2.4. Be able to determine probabilities using distribution and density 

functions [a] 
2.5. Be able to perform random variable transformations [a] 

3. Know and apply the basic 
time/frequency domain 
principles concerning Random 
Processes [a] 

3.1. Understand the concept of a random process [a] 
3.2. Be able to characterize random processes in the time domain [a] 
3.3. Be able to characterize random processes in the frequency domain 

[a] 

4. Know and apply the basic 
time/frequency domain input-
output relationships 
concerning Linear time 
invariant systems with random 
inputs [a] 

4.1. Be able to use time domain input/output relationships of linear 
time invariant systems with random inputs [a] 

4.2. Be able to use frequency domain input/output relationships of 
linear time invariant systems with random inputs [a] 

Contribution of Course to Meeting the Professional Component 

The course contributes to building the fundamental basic concepts and applications of probability and 

random processes in Electrical Engineering. 

RELATIONSHIP TO PROGRAM OUTCOMES (%) 

1 2 3 4 5 6 7 

100       

Evaluation 

Assessment Tool Expected Due Date Weight 

Mid-Term Exam Sat. 8 August 2020 25% 

Class Work  25% 

Final Exam  50% 
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I. INTRODUCTION 

I.1. Set Definitions 

Definition I-1 

A set is a collection of objects (defined as elements). 

Example I.1 

A set can consist of integer numbers from 1 to 10.  

A set can consist of small alphabet letters from a to z. 

Set Elements 

When object a  is an element of A , we write a A . 

When object a  is not an element of A , we write a A . 

Tabular Method 

 , , , ,A x y z w u  

Rule Method 

 
 
integers from 1 to 5

| 0

A

B x x



 
 

This methods is useful when the set size is large. 

Countable Sets 

A set is said to be countable if all its elements can be put in one-to-one correspondence with the 
natural numbers, which are the integers 1, 2, 3, etc. 

Example I.2 

The set  0,1 4,1 2,C    is countable; because we can create a one-to-one correspondence with 

the natural numbers. 

If a set is not countable it is called uncountable. 

Example I.3 

The set  | 0 10D x x    is uncountable; because we cannot create a one-to-one correspondence 

with the natural numbers. 

Empty Set 

A set is said to be empty if it has no elements. The empty set is often called the null set. Empty set 
is often denoted by the symbol  . 
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Example I.4 

The set  real integers whose squares are negativeE   is empty; because squares of real integers 

cannot be negative. In this case E  . 

Finite Sets 

A finite set is one that is either empty or has elements that can be counted, with the counting 
process terminating. 

Example I.5 

Set C  and D  in the above examples are infinite. 

Set E  is empty, and is therefore finite. 

The set of numbers on the six faces of a fair die is finite. 

The set of student names in this EE 360 class is finite. 

Subsets 

A set A  is said to be a subset of another set, B , if all elements of A  are also elements of B , in 
which case we write A B . With this definition, it is possible that the two sets are equal (i.e., they 
have all the same elements), in which case A B  and at the same time B A . If on the other 
hand, A  is a subset of B  and there are some elements of B  that are not in A , then we say that A  
is a proper subset of B  and we write A B . 

Example I.6 

Let  Numbers on the six faces of a fair dieF  . 

Let  2,4,6G  . 

Let  Positive integers that are smaller than 7H  . 

Then we have: 

G F . H F . F H . H F . 

We can also write: 

F G . F H . H F . F H . 

Exercise I.1 

Provide a set X ; such that X F  and X G . 
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Universal Set 

The universal set (or sample space) S  is the set of all objects under consideration in a given 
problem. 

Example I.7 

Set F in Example I.6 is the universal set of the experiment of rolling a die. 

Complement 

The complement of a set A , written A , is the set of all elements in S  that are not in A . 

Example I.8 

Set G  in Example I.6 has the complement  1,3,5G   in the experiment of rolling a die. 

Difference Set 

For two sets A  and B  that satisfy A B , the difference set, written B A , is the set of elements 
in B  that are not in A . 

Example I.9 

Let A  consist of integer numbers from 1 to 10.  

Let B  consist of integer numbers from 7 to 15.  

 1, 2,3,4,5,6A B   and  11,12,13,14,15B A  . 

Note that A B B A   . 

Union of Sets 

For any two sets A  and B  the union of the two sets, A B , is the set of all elements that are 
contained in either A  or B . Union is sometimes expressed as A B . 

Example I.10 

The union of set  red,blue,orangeA   and set  white,blueB   is the set 

   red,blue,orange,white white,blue,red,orangeC A B    . 

Intersection of Sets 

For any two sets A  and B  the intersection of the two sets, A B  , is the set of all elements that 
are contained in both A  and B . Intersection is sometimes expressed as AB . 

Example I.11 

The intersection of set  red,blue,orangeA   and set  white,blueB   is the set 

 blueD A B   . 
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Mutually Exclusive Sets 

Two sets A  and B  are said to be mutually exclusive, or disjoint, if and only if they have no 
common elements, in which case A B   . 

Example I.12 

Sets  1,2,3A   and  x,yB   are mutually exclusive, and A B   . 

Sets  red,blue,orangeA   and  white,blueB   are not mutually exclusive; because 

 blueA B    . 

Exhaustive Sets 

A collection of sets 1 2, , , nA A A  are said to be exhaustive if each element in the universal set is 

contained in at least one of the sets in the collection. In such a case 1 2 nA A A S    . 

Example I.13 

Let  integer,  0 10S x x    ,  1 1,2,3,6A  ,  2 4,5,6,7,8A   and  3 4,8,9A  . Sets 1A , 

2A  and 3A  are exhaustive, but they not mutually exclusive. 

Example I.14 

Let  integer,  0 10S x x    ,  1 1,2,3,6A  ,  2 4,5,7,8A   and  3 9A  . Sets 1A , 2A  and 

3A  are exhaustive and mutually exclusive. 

Venn Diagrams 

 

Figure I.1: Venn Diagram 

Exercise I.2 

Show that: 

,A S A A     If A B  and B C  then A C  

Generally, A B B A    If A B B A   , then A B  

S

A B

A BA A B  B A B 

A B

A B
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,A A A A A A     ,A B B A A B B A       

( ) ( )A B C A B C A B C         ( ) ( )A B C A B C A B C         

( ) ( ) ( )A B C A B A C       ( ) ( ) ( )A B C A B A C       

A B A
A B

A B B

 
      A S    

A

S A A

  
    

A A

S A S

  
    

 
,

AA

S S 

 


 
 

A A S

A A 
  


   

DeMorgan’s first law: A B A B    DeMorgan’s second law: A B A B    

I.2. Experiments, Sample Spaces, and Events 

A deterministic signal is one that may be represented by parameter values, such as a sinusoid, 
which may be perfectly reconstructed given an amplitude, frequency, and phase. Stochastic 
(random) signals, such as noise, do not have this property. 

The theory of probability provides tools to model and analyze phenomena that occur in many 
diverse fields, such as communications, signal processing, control, and computers. Perhaps the 
major reason for studying probability and random processes is to be able to model complex 
systems and phenomena. 

Definition I-2 

An experiment is a (quite often hypothetical) procedure we perform that produces some result. 

Definition I-3 

An outcome is a possible result of an experiment. If a fair coin is tossed five times, an outcome 
could be HHTHT . 

Definition I-4 

The sample space is the collection or set of all distinct (collectively exhaustive and mutually 
exclusive) outcomes of an experiment. The letter S  is used to designate the sample space, which 
is the universal set of outcomes of an experiment. A sample space is called discrete if it is a finite 
or a countably infinite set. It is called continuous or a continuum otherwise. 
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Example I.15 

Consider flipping a fair coin once, where fair means that the coin is not biased in weight to a 
particular side. There are two possible outcomes, namely, a head or a tail. Thus, the sample space 
S  consists of two outcomes, H  to indicate that the outcome of the coin toss was a head and T  to 
indicate that the outcome of the coin toss was a tail. We may write  ,S H T . 

Example I.16 

A cubical die with numbered faces is rolled and the result observed. The sample space consists of 
six possible outcomes: 1,  2,   ,  6 . Note that these numbers represent the six faces of the cubical 

die. We may write  1, 2,3,4,5,6S  . 

Definition I-5 

An event is some set of outcomes of an experiment. For example, the event C  in the experiment 
of tossing a fair coin five time might be  outcomes with an even number of headsC  . All events 

of an experiment are subsets of the sample space. 

Example I.17 

Consider the experiment of rolling two dice and observing the results. The sample space consists 
of the 36 outcomes: (1,  1),  (1, 2),  , (6,6) ; the first component in the ordered pair indicates the 
number on the first die, and the second component indicates the number on the second die. Several 
interesting events can be defined from this experiment, such as 

 sum of the two numbers 4A   ,  the two numbers are identicalB  , 

 the first number is larger than the secondC  . 

Imagine that we conduct two experiments, with each consisting of rolling a single die. The sample 
spaces ( 1S  and 2S ) for each of the two experiments are identical, namely, the same as Example 

I.16. We may now consider the sample space, S , of the original experiment to be the combination 
of the sample spaces, 1S  and 2S , which consists of all possible combinations of the elements of 

both 1S  and 2S . This is an example of a combined sample space. 

Example I.18 

Let us flip a coin until a tails occurs. The experiment is then terminated. The sample space consists 
of a collection of sequences of coin tosses. Label these outcomes as ,   1, 2,3,n n   . The final 

toss in any particular sequence is a tail and terminates the sequence. All the preceding tosses prior 
to the occurrence of the tail must be heads. 

The possible outcomes that may occur are 

     1 2 3,  ,  ,  , ,  ,  T H T H H T       
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Note that in this case, n  can extend to infinity. This is another example of a combined sample 
space resulting from conducting independent but identical experiments. In this example, the 
sample space is countably infinite, while in the previous examples sample spaces were finite. 

Example I.19 

Consider a random number generator that selects a number in an arbitrary manner from the semi-
closed interval [0, 1). The sample space consists of all real numbers x  for which 0  1x  . This 
is an example of an experiment with a continuous sample space. We can define events on a 
continuous space as well, such as 

 
none p foin : i itet  

1

2
C x 


   
upper-bounde nid interval e: inf it

1

2
A x 


  

upper- and lower-boun v infinitded inter a  el:

11
B= <x-

42

 
 
 

 

Other examples of experiments with continuous sample spaces include the measurement of the 
voltage of thermal noise in a resistor and the measurement of the ( , , )x y z  position of an oxygen 
molecule in the atmosphere. 

A particular experiment can often be represented by more than one sample space. The choice of a 
particular sample space depends upon the questions that are to be answered concerning the 
experiment. 

Example I.20 

Consider the experiment of rolling two dice and observing the results. 

 If the dice are distinguishable, and we are interested in what numbers show on the upper faces 
of the dice, then the sample space consist of the 36 ordered pairs  (1,1), (1, 2), , (6,6) . 

 If the dice are indistinguishable, and we are interested in what numbers show on the upper 
faces of the dice, then the sample space consist of the 21 ordered pairs 
 (1,1), (1, 2), , (1,6), (2,2), (2,3), , (6,6)  . 

 If we are interested in the sum of the two numbers showing on the upper faces of the two dice, 
then the sample space consist of the 11 numbers  2,3, ,12 . 

I.3. Basic Combinatorial Analysis 

I.3.A. PERMUTATIONS 

The factorial of a non-negative integer number r  is given by 

 ! ( 1) (1)r r r    (I.1) 

When 0r   or 1r  , the factorial is one: 

 0! 1  (I.2) 
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 1! 1  (I.3) 

Suppose that D  is a set with n  elements. 

A permutation of size  0,1, ,k n   from D  is an ordered sequence of  distinct elements of D ; 

i.e., a sequence of the form  1 2, , , kx x x  where ix D  for each i  and i jx x  for i j . 

Example I.21 

Let  , , ,Q A B C D .  

 Permutations of length 1 are:  A ,  B ,  C ,  D . 

 Permutations of length 2 are:  ,A B ,  ,A C ,  ,A D ,  ,B A ,  ,B C , …,  ,D C . 

Exercise I.3 

In Example I.21, write down all permutations of all possible lengths. 

The number of permutations of length k  from an n -element set is 

 
( ) !

( )!

( 1) ( 1)

k n
n

n k

n n n k




   
 (I.4) 

Exercise I.4 

In Exercise I.3, determine the numbers of permutations. 

Exercise I.5 

What is the number of permutations of length n  from an n -element set? 

I.3.B. POWERS OF REAL NUMBERS 

Let a , s  and n . Define 

 ( , ) ( )( 2 ) ( ( 1) )s ka a a s a s a k s      (I.5) 

Example I.22 

Let 3.5a  , 1.2s   and 5k  .  Then, 

(1.2,5)3.5 3.5(4.7)(5.9)(7.1)(8.3)

5719.45115




 

Note that 
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(0, )

 terms

( ) ( )k

k

k

a a a a

a






 (I.6) 

 

( 1, )

( )

( 1) ( 1)

Falling Power of 

k

k

a a a a k

a

a

    






 (I.7) 

 
(1, ) ( 1) ( 1)

Rising Power of 

ka a a a k

a

   



 (I.8) 

 (1, )1 !k k  (I.9) 

I.3.C. COMBINATIONS 

A combination of size  0,1, ,k n   from D  is an unordered sequence of  distinct elements of 

D ; i.e., a sequence of the form  1 2, , , kx x x  where ix D  for each i  and i jx x  for i j . 

A combination of size k  from D  corresponds to an unordered sample of size k  chosen without 
replacement from the population D . For each combination of size k  from D , there are !k  distinct 
orderings of the elements of that combination. Hence, the number of combinations is equal to 

 
,

!

!( )!n k
n

C
k n k

n

k




 
  
 

 (I.10) 

The number 
n

k

 
 
 

 is known as the binomial coefficient. 

 0,  if 
n

k n
k

 
  

 
 (I.11) 

 0,  if 0
n

k
k

 
  

 
 (I.12) 

 1
n

n

 
 

 
 (I.13) 

 1
0

n 
 

 
 (I.14) 
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n n

k n k

   
      

 (I.15) 

 
1 1

1

n n n

k k k

      
           

 (I.16) 

I.3.D. BINOMIAL THEOREM 

 
0

( )
n

n k n k

k

n
a b a b

k




 
   

 
  (I.17) 

I.3.E. MULTINOMIAL THEOREM 

The number of ways to partition a set of n elements into k  subsets of sizes 1 2, , kn n n  is equal 

to the multinomial coefficient, given by 

 

1 11

1 2 1 2

1 2

, , ,

!

( )!( )! ( )!

k

k k

k

n n n nn n n

n n n nn n

n

n n n

       
     
     










 (I.18) 

 1 2

1 2

1
 cases

1 2 1 2
1 2

( )
, , ,

k

k

n k

n

n
nn nn

k k
kn n n n

n
a a a a a a

n n n

  
 
 

   

 
     

 



 


 (I.19) 

Example I.23 

4 0 0 4 0 1 3 0 2 2 4 0 0
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

15 cases

( )
0,0,4 0,1,3 0,2, 2 4,0,0

n n n n
a a a a a a a a a a a a a a a

       
             

       



 

Exercise I.6 

In an exam with 10 participants, the first, second, and third highest marks are noted. How many 
outcomes are there? 

Example I.24 

Four husbands and their wives are to be seated on eight chairs. How many seating arrangements 
are there in each of the following cases: 

 There are no restrictions. 

8! 40320  
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 Men must sit together and women must sit together. 

2(8 3 2 1)(4 3 2 1) 1152 (2)(4!)         

 Men cannot sit together and women cannot sit together. 

(2)(4!)(4!) 1152  

 Men must sit together. 

2(4!) (5) 2880  

 Men cannot sit together. 

2(4!) (5) 2880  

 Each family must sit together. 

(8)(6)(4)(2) 384  

Example I.25 

Five engineering books, four science books, and three history books are arranged on a bookshelf. 
Find the number of arrangements in each of the following cases: 

 There are no restrictions. 

12! 479,001,600  

 The books in each subject must be together. 

(5! 4! 3!)(3!) 103,680    

 The engineering must be together. 

(5! 7!)(8) 4,838,400   

Example I.26 

Find the number of distinct arrangements of letter in the following words: 

 random 

6! 720  

 signals 

7
(5!) (21)(120) 2520

2

 
  

 
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 statistics 

10 7 4
(2)(1) (120)(35)(6)(2)(1) 50400

3 3 2

   
    

   
 

Example I.27 

How many solutions does the equation x y r   for integer x , y , and r , 0r   in the following 
three cases: 

 , 0x y   

1r   

 , 0x y  , x y  

1 if  is oddr r  and  if  is evenr r  

 , 0x y   

1r   

Example I.28 

How many solutions does the equation 10x y z    for integer x , y , and z  in the following 
three cases: 

 , , 0x y z   

11 10 1 66    

 , , 0x y z  , x y , y z , x z  

8 8 6 6 4 4 4 4 2 2 48           

 , , 0x y z   

8 7 1 36     

I.4. Axioms of Probability 

Probability is a function of an event that produces a numerical quantity that measures the likelihood 
of that event. 

There are several ways to assign probabilities to events. All events can have probabilities. 

Axiom 1: 

For any event A , Pr( ) 0A  (a negative probability does not make sense). 
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 Pr( ) 0,A A   (I.20) 

Axiom 2: 

If S  is the sample space for a given experiment, Pr( ) 1S   (probabilities are normalized so that 
the maximum value is unity). 

 Pr( ) 1S   (I.21) 

Axiom 3a: 

If A B   , then  Pr Pr( ) Pr( )A BA B   . 

  
Pr( ) Pr( ),

Pr
Pr( ) Pr( ),

A B A B
A B

A B A B




   
    

 (I.22) 

Corollary I.1 

Consider M    sets 1 2, , , MA A A  that are mutually exclusive, ;i jA A i j    , 

 
11

Pr Pr( ), if ;
M M

i i i j
ii

A A A A i j


 
      

 
  (I.23) 

Axiom 3b: 

For an infinite number of mutually exclusive sets, ,   1,  2,  3,  iA i  , ;i jA A i j    , 

 
11

Pr Pr( ), if ;i i i j
ii

A A A A i j
 



 
      

 
  (I.24) 

Theorem I.1 

For any sets A  and B  (not necessarily mutually exclusive), 

 Pr( ) Pr( ) Pr( ) Pr( )A B A B A B      (I.25) 
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I.4.A. VENN DIAGRAMS 

 

Figure I.2: Venn Diagram to Prove Theorem I.1 

Note that Pr( ) Pr( )A B  involves adding the intersection region twice. 

Theorem I.2 

 Pr( ) 1 Pr( )A A   (I.26) 

Theorem I.3 

 Pr( ) Pr( )A B A B    (I.27) 

I.4.B. ATOMIC OUTCOMES: 

Events that cannot be decomposed into simpler events. 

Often, atomic outcomes are assigned equal probabilities. 

If there are M  mutually exclusive collectively exhaustive atomic outcomes 1 2, , , M   , we 

could assign (in case there is no information about the likelihood of the outcomes). 

 
1

Pr( ) ,m m
M

    (I.28) 

For example, (I.28) applies for the numbers on the six faces of a standard cubic die, and the 
probability of each number is one sixth (1/6). However, (I.28) does not apply if some faces of the 
die are larger than other faces. 

Obviously, when the M  outcomes are  mutually exclusive collectively exhaustive, we have 

 

1 1

,

Pr 1

i j

M M

m m
m m

i j

S

  

 
 

   

 
    

 
 

 (I.29) 

S

A B

A B
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Example I.29 

Consider the coin flipping experiment of Example I.15. In this case, there are only two atomic 
events, 1 H   and 2 T  . Provided the coin is fair (again, not biased towards one side or the 

other), we have every reason to believe that these two events should be equally probable. These 
outcomes are mutually exclusive and collectively exhaustive (provided we rule out the possibility 
of the coin landing on its edge). According to our theory of probability, these events should be 
assigned probabilities 

1
Pr( ) Pr( )

2
H T   

Example I.30 

Consider the dice rolling experiment of Example I.16. If the die is not loaded, the six possible 
faces of the cubic die are reasonably taken to be equally likely to appear, in which case, the 
probability assignment is 

1
Pr(1) Pr(2) Pr(6)

6
     

From this assignment we can determine the probability of more complicated events, such as 

Pr(even number is rolled)=Pr(2 4 6)

=Pr(2)+Pr(4)+Pr(6)

1 1 1
=

6 6 6
1

2

 

 



 

Example I.31 

In Example I.17, a pair of dice were rolled. In this experiment, the most basic outcomes are the 36 
different combinations of the six atomic outcomes of the previous example. Again, each of these 
atomic outcomes is assigned a probability of 1/36. Next, suppose we want to find the probability 
of the event  sum of two dice 5A   . Then, 

 Pr( ) Pr (1,4) (2,3) (3,2) (4,1)

Pr(1, 4) Pr(2,3) Pr(3, 2) Pr(4,1)

1 1 1 1

36 36 36 36
1

9

A    

   

   



 

 two numbers are identicalA   
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I.4.C. RELATIVE FREQUENCY APPROACH 

The relative frequency approach requires that the experiment we are concerned with be 
repeatable. 

The probability of an event, can be assigned by repeating the experiment a large number of times 
and observing how many times the event actually occurs. 

Pr( ) lim A

n

n
A

n
  

To get an exact measure of the probability of an event using the relative frequency approach, we 
must repeat the event an infinite number of times. 

I.5. Joint and Conditional Probabilities 

 Pr( , ) Pr( )A B A B    (I.30) 

The above can be extended to more than two events. 

If A  and B  are mutually exclusive, then their joint probability is zero Pr( , ) Pr( ) 0A B    . 

Both events (sets) A  and B  can be expressed in terms of atomic outcomes. 

We then write A B  as the set of those atomic outcomes that is common to both and calculate the 
probabilities of each of these outcomes. 

Alternatively, we can use the relative frequency approach: 

 ,Pr( , ) lim A B

n

n
A B

n
   (I.31) 

Example I.32 

A standard deck of playing cards has 52 cards that can be divided in several manners. There are 
four suits (spades, hearts, diamonds, and clubs), each of which has 13 cards (ace, 2, 3, 4, . . . , 10, 
jack, queen, king). There are two red suits (hearts and diamonds) and two black suits (spades and 
clubs). Also, the jacks, queens, and kings are referred to as face cards, while the others are number 
cards. 

Suppose the cards are sufficiently shuffled (randomized) and one card is drawn from the deck. The 
experiment has 52 atomic outcomes corresponding to the 52 individual cards that could have been 
selected. Hence, each atomic outcome has a probability of 1/52. 

Define the events: A = {red card selected}, B = {number card selected}, and C = {heart selected}. 

Since the event A consists of 26 atomic outcomes (there are 26 red cards), then Pr(A) = 26/52 = 
1/2. 

Likewise, Pr(B) = 40/52 = 10/13 and Pr(C) = 13/52 = 1/4. 
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Events A and B have 20 outcomes in common, hence Pr(A,B) = 20/52 = 5/13. 

Likewise, Pr(A,C) = 13/52 = 1/4 and Pr(B,C) = 10/52 = 5/26. 

It is interesting to note that in this example, Pr(A,C) = Pr(C). This is because C A  and as a result 
A C C  . 

Often the occurrence of one event may be dependent upon the occurrence of another. 

In the previous example, the event A = {a red card is selected} had a probability of Pr(A) = 1/2. If 
it is known that event C = {a heart is selected} has occurred, then the event A is now certain 
(probability equal to 1), since all cards in the heart suit are red. 

Likewise, if it is known that the event C did not occur, then there are 39 cards remaining, 13 of 
which are red (all the diamonds). Hence, the probability of event A in that case becomes 1/3. 

Clearly, the probability of event A depends on the occurrence of event C. 

We say that the probability of A is conditional on C. The probability of A given knowledge that 
the event C has occurred is referred to as the conditional probability of A given C. 

The shorthand notation  Pr |A C  is used to denote the probability of the event A given that the 

event C has occurred, or simply the probability of A given C. 

Definition I-6 

For two events A and B, the probability of A conditioned on knowing that B has occurred is 

   Pr( , )
Pr , Pr( ) 0|

Pr( )

A B
BA B

B
   (I.32) 

This definition of conditional probability does indeed satisfy the axioms of probability. 

 
Pr( , ) Pr( | ) Pr( )

Pr( | ) Pr( )

A B A B B

B A A




  (I.33) 

 
Pr( , , ) Pr( | , ) Pr( , )

Pr( | , ) Pr( | ) Pr( )

A B C A B C B C

A B C B C C




  (I.34) 

Example I.33 

Consider the experiment of drawing cards from a standard deck. Suppose that we select two cards 
at random from the deck. 

When we select the second card, we do not return the first card to the deck. We are selecting cards 
without replacement. 

The probabilities associated with selecting the second card are slightly different if we have 
knowledge of which card was drawn on the first selection. 
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Let A = {first card was a spade} and B = {second card was a spade}. The probability of the event 
A can be calculated as in the previous example to be Pr(A) = 13/52 = 1/4. Likewise, if we have no 
knowledge of what was drawn on the first selection, the probability of the event B is the same, 
Pr(B) = 1/4. To calculate the joint probability of A and B, we have to do some counting. 

When we select the first card there are 52 possible outcomes. 

Since this card is not returned to the deck, there are only 51 possible outcomes for the second card. 

Hence, this experiment of selecting two cards from the deck has 52 51  possible outcomes each 
of which is equally likely and has a probability of 1 / (52 51) . Therefore, 

  13(12) 1
Pr ,

52(51) 17
A B    

The conditional probability of the second card being a spade given that the first card is a spade is 
then 

     Pr , Pr | Pr

12 1

51 4

A B B A A

     
  

 

   
 

Pr , 1 17 4
Pr |

Pr 1 4 17

A B
B A

A
    

However, calculating this conditional probability directly is probably easier than calculating the 
joint probability. Given that we know the first card selected was a spade, there are now 51 cards 
left in the deck, 12 of which are spades, thus 

  12 4

51 17
Pr |B A    

Once this is established, then the joint probability can be calculated as 

     
7

4 1
Pr Pr | Pr

4

1
,

117
A B B A A    

Example I.34 

In a game of poker, you are dealt five cards from a standard 52 card deck. What is the probability 
that you are dealt a flush in spades? (A flush is when you are dealt all five cards of the same suit.) 

 What is the probability of a flush in spades? 
 What is the probability of a flush in any suit? 

Let iA  be the event { i th card dealt to us is a spade}, 1, 2,3, 4,5i  . Then 
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   1 2 3 4 5, , , ,Pr Prflush in spades A A A A A  

 1
1

Pr
4

A   

     1 2 2 1 1
12 1 1

Pr Pr Pr, |
51 4 17

A A A A A    

     1 2 3 3 1 2 1 2
11 1 11

, , | ,Pr Pr Pr ,
50 17 850

A A A A A A A A    

     1 2 3 4 4 1 2 3 1 2 3
10 11 11

, , , | , , , ,Pr Pr Pr
49 850 4165

A A A A A A A A A A A    

     1 2 3 4 5 5 1 2 3 4 1 2 3 4
9 11 33

, , , , | , , , , , ,Pr Pr Pr
48 4165 66,640

A A A A A A A A A A A A A A    

  33 33
Pr 4flush in any suit

66,640 16,660

   
 

 

I.6. Bayes’s Theorem 

Theorem I.4 

For any events A and B such that Pr( ) 0B  , 

     Pr Pr Pr( ) Pr Pr( ), A B B B A AA B     

   Pr Pr( )
Pr

Pr( )

B A A
A B

B
  

   Pr Pr( )
Pr

Pr( )

A B B
B A

A
  

Theorem I.5: Theorem of Total Probability 

Let 1 2, , , nB B B  be a set of mutually exclusive and exhaustive events. That is, i jB B    for 

all i j  and 

11

Pr( ) 1
n n

i i
ii

B S B


    

Then 
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   
1

|Pr( ) Pr Pr
n

i i
i

A B BA


  

 

Theorem I.6: Bayes’s Theorem 

Let 1 2, , , nB B B  be a set of mutually exclusive and exhaustive events. Then 

   

 

   
1

,Pr
|Pr

Pr( )

,Pr

|Pr Pr

i
i

i
n

i i
i

A B
B A

A

A B

A B B








 

Example I.35 

A certain auditorium has 30 rows of seats. Row 1 has 11 seats, while Row 2 has 12 seats, Row 3 
has 13 seats, and so on to the back of the auditorium where Row 30 has 40 seats. A prize is to be 
given away by randomly selecting a row (with equal probability of selecting any of the 30 rows) 
and then randomly selecting a seat within that row (with each seat in the row equally likely to be 
selected). 

 Find the probability that Seat 15 was selected given that Row 20 was selected. 
 Find the probability that Row 20 was selected given that Seat 15 was selected. 
 Find the probability that Row 5 was selected given that Seat 15 was selected. 

The first task is straightforward. Given that Row 20 was selected, there are 30 possible seats in 
Row 20 that are equally likely to be selected. Hence, Pr(Seat 15|Row 20) = 1/30. 

Without the help of Bayes’s theorem, finding the probability that Row 20 was selected given that 
we know Seat 15 was selected would seem to be a formidable problem. 

Using Bayes’s theorem, 
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Pr(Seat 15|Row 20)Pr(Row 20)
Pr(Row 20|Seat 15)=

Pr(Seat 15)
 

The two terms in the numerator on the right-hand side are both equal to 1/30. The term in the 
denominator is calculated using the help of the theorem of total probability. 

30

5

1 1
Pr(Seat 15) 0.0342

10 30k k

 
    
  

With this calculation completed, the a posteriori probability of Row 20 being selected given seat 
15 was selected is given by: 

1 1
30 30Pr(Row 20|Seat 15) = 0.0325
0.0342

  

Note that the a priori probability that Row 20 was selected is 1/30 = 0. 0333. Therefore, the 
additional information that Seat 15 was selected makes the event that Row 20 was selected slightly 
less likely. 

Using Bayes’s theorem again, 

Pr(Seat 15|Row 5)Pr(Row 5)
Pr(Row 5|Seat 15)=

Pr(Seat 15)
 

1
Pr(Seat 15|Row 5)

15
  

Pr(Seat 15,Row 5) Pr(Seat 15|Row 5)Pr(Row 5)

1 1
=

15 30


  

The term in the denominator is the same as the corresponding one in the previous part. 

30

5

1 1
Pr(Seat 15) 0.0342

10 30k k

 
    
  

Therefore, 

1 1
15 30Pr(Row 5|Seat 15) = 0.065
0.0342

  

The additional information that Seat 15 was selected makes the event that Row 5 was selected 
more likely. 



Mohammad M. Banat – EE 360: Random Signal Analysis 27 

I: Introduction 

 I.7-Independence 

 

 

In some sense, this may be counterintuitive, since we know that if Seat 15 was selected, there are 
certain rows that could not have been selected (i.e., Rows 1–4 have fewer than 15 seats) and, 
therefore, we might expect Row 20 to have a slightly higher probability of being selected compared 
to when we have no information about which seat was selected. 

Note that the event that Seat 15 was selected makes some rows much more probable, while it 
makes others less probable and a few rows now impossible. 

I.7. Independence 

In Example I.35, it was seen that observing one event can change the probability of the occurrence 
of another event. In that particular case, knowing that Seat 15 was selected, lowered the probability 
that Row 20 was selected. We say that the event  Row 20 was selectedA   is statistically 

dependent on the event  Seat 15 was selectedB  . 

If the description of the auditorium were changed so that each row had an equal number of seats 
(e.g., all 30 rows had 20 seats each), then observing the event  Seat 15 was selectedB   would 

not give us any new information about the likelihood of the event  Row 20 was selectedA  . In 

that case, we say that the events A  and B  are statistically independent. 

Mathematically, two events A  and B  are statistically independent if 

Pr( | ) Pr( )A B A  

Note that if Pr( | )  Pr( )A B A , then the following two conditions hold 

Pr( | ) Pr( )B A B  

 Pr Pr( | ) Pr( ),

Pr( )Pr( )

A B BA B

A B




 

Furthermore, if Pr( | ) Pr( )A B A , then the other two conditions do not hold. 

Definition I-7 

Two events are statistically independent if and only if 

     Pr , Pr PrA B A B  

Example I.36 

Consider the experiment of tossing two distinguishable dice and observing the numbers that appear 
on the two upper faces. For convenience, let the first die tossed being red and the second being 
blue. Let 

 number on the red die is less than or equal to 2A   
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 number on the blue die is greater than or equal to 4B   

 the sum of the numbers on the two dice is 3C   

Let’s compare joint probabilities with products of single event probabilities. 

Pr( ) 1 / 3

Pr( ) 1 / 2

Pr( ) 1 /18

A

B

C





 

Multiplying each two probabilities above results in 

1
Pr( ) Pr( )

6
A B   

1
Pr( ) Pr( )

54
A C   

1
Pr( ) Pr( )

36
B C   

Of the 36 atomic outcomes of the experiment, six belong to the event A B , and hence, 

1
Pr( , )

6
A B   

Since Pr( , ) Pr( ) Pr( )A B A B , we conclude that the events A  and B  are independent. 

What about the events A  and C ? 

Of the 36 possible atomic outcomes of the experiment, two belong to the event A C , and hence, 

1
Pr( , )

18
A C   

Since Pr( , ) Pr( ) Pr( )A C A C , the events A  and C  are not independent. 

Finally, we look at the pair of events B  and C . Clearly, B  and C  are mutually exclusive. If the 
white die shows a number greater than or equal to 4, there is no way the sum can be 3. 

Hence, Pr( , ) 0 Pr( ) Pr( )B C B C  , and these two events are dependent. 

The previous example brings out a point that is worth elaborating on. It is a common mistake to 
equate mutual exclusiveness with independence. Mutually exclusive events are not the same thing 
as independent events. In fact, for two events A  and B  for which Pr(A) 0  and Pr(B) 0 , A  
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and B  can never be both independent and mutually exclusive. Thus, mutually exclusive events are 
necessarily statistically dependent.  

Note that intersecting events need not be independent. Consider the following example. 

Example I.37 

Consider the experiment of tossing a fair die and observing the number that appears on the upper 
face. Consider the events  2,4,6A   and  2,4,5B  . 

Obviously, Pr( ) Pr( ) 1 2A B  , and hence, Pr( ) Pr( ) 1 4A B  . 

However, the joint event  2,4C A B    has the probability Pr( ) 1 3C  , which is not equal to 

the product of the individual event probabilities. Therefore, A  and B  are dependent events even 
though they are intersecting. 

Definition I-8 

The events A , B  and C  are mutually independent if each pair of events is independent; that is, 

Pr( , ) Pr( ) Pr( )

Pr( , ) Pr( ) Pr( )

Pr( , ) Pr( ) Pr( )

A B A B

A C A C

B C B C





, 

and in addition, 

Pr( , , ) Pr( ) Pr( ) Pr( )A B C A B C . 

Definition I-9 

The events 1 2, , , nA A A  are independent if any subset of k n  of these events are independent, 

and in addition  

1 2 1 2Pr( , , , ) Pr( )Pr( ) Pr( )n nA A A A A A  . 

Suppose we have some time waveform ( )X t  which represents a noisy signal that we wish to 

sample at various points in time, 1 2, , , nt t t  such that ( )i iA X t . In some cases, we have every 

reason to believe that the value of the noise at one point in time does not affect the value of the 
noise at another point in time. Hence, we assume that these events are independent and write 

       1 2 1 2Pr , , , Pr Pr Prn nA A A A A A   

I.8. Discrete Random Variables 

Suppose we conduct an experiment which has some sample space S . Furthermore, let   be some 
outcome defined on the sample space S . It is useful to define functions ( )X f   of the outcome 
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 . The function f  has as its domain all possible outcomes associated with the experiment. The 
range of the function f  will depend upon how it maps outcomes to numerical values but in general 
will be the set of real numbers or a subset of the set of real numbers. 

Definition I-10 

A random variable is a real-valued function of the elements of a sample space S . Given an 
experiment with sample space S , the random variable X  maps each possible outcome S   to a 
real number ( )X f   as specified by some rule. 

If the mapping ( )X   is such that the random variable X  takes on a finite or countably infinite 
number of values, then we refer to X  as a discrete random variable; whereas, if the range of ( )X   
is an uncountably infinite number of points, we refer to X  as a continuous random variable. 

Since ( )X f   is a random variable whose numerical value depends on the outcome of an 
experiment, we give X  a probabilistic description by stating the probabilities that the variable X  
takes on a specific value or values (e.g.,  Pr 3X   or  Pr 8X  ). For now, we will focus on 

random variables that take on discrete values and will describe these random variables in terms of 
probabilities of the form  Pr X x . 

Definition I-11 

The probability mass function (PMF) ( )XP x  of a random variable X  is a function that assigns a 

probability to each possible value of the random variable X . The probability that the random 
variable X  takes on the specific value x  is the value of the probability mass function for x . That 
is, 

( ) Pr( )XP x X x   

Example I.38 

A discrete random variable may be defined for the random experiment of flipping a coin. The 

sample space of outcomes is  ,S H T . We could define the random variable X  to be ( ) 0X H   

and ( ) 1X T  . That is, the sample space is mapped to the set  0,1  by the random variable X . 

Assuming a fair coin, the resulting probability mass function is 

 

 

1
0 Pr( 0) Pr( )

2
1

1
2

X

X

P X H

P

   


 

Note that the mapping is not unique and we could have just as easily mapped the sample space 
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to any other pair of real numbers (e.g.,  1, 1  ). 

Example I.39 

Suppose we repeat the experiment of flipping a fair coin n  times and observe the sequence of 
heads and tails. A random variable Y  could be defined to be the number of times tails occurs in n  
trials. It turns out that the probability mass function for this random variable is 

1
( ) , 0,1, ,

2

n

Y
n

P k k n
k

       
  

The details of how this PMF is obtained will be deferred until later in this section. 

Example I.40 

Again, let the experiment be the flipping of a coin, and this time we will continue repeating the 
trials until the first time a heads occurs. The random variable Z  will represent the number of times 
until the first occurrence of a heads. In this case, the random variable Z  can take on any positive 
integer value 1 Z   . The probability mass function of the random variable Z  can be worked 
out as follows: 

   
  1

1

( ) Pr Pr 1 tails followed by one heads

Pr( )Pr( )

11
22

1

2

Z

n

n

n

P n Z n n

HT 



   



   
 

   
 

 

Hence, 

  1
,  1,2,3,

2

n

ZP n n   
 

 

Note that the following must always hold for discrete random variables 

0 ( ) 1XP x   

( ) 1X
x

P x   

I.8.A. BERNOULLI RANDOM VARIABLE 

Consider an experiment with the sample space  0,1S  . Let 
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(1)

(0) 1
X

X

P p

P p


 

 

X  is called a Bernoulli random variable. 

I.8.B. BINOMIAL RANDOM VARIABLE 

Consider repeating a Bernoulli trial n  times, where the outcome of each trial is independent of all 

others. We say that the repeated experiment has a sample space of  0,1
n

nS  , which is referred 

to as a Cartesian space. That is, outcomes of the repeated trials are represented as n  element 
vectors whose elements are taken from S . 

Consider, for example, the outcome 

1,1, ,1,0,0, ,0
k n kk

n

 

 
 
 
 

  
  

The probability of this outcome occurring is 

 Pr (1 )k n k
k p p    

The probability does not change if we shuffle the digits. The order of the 1s and 0s in the sequence 
is irrelevant. 

Let the random variable X  represent the number of times the outcome 1 has occurred in the 
sequence of n  trials. This is known as a binomial random variable and takes on integer values 
from 0 to n . 

To find the probability mass function of the binomial random variable, let kA  be the set of all 

outcomes that have exactly k  1s and n k  0s. Note that all outcomes in this event occur with the 
same probability. Furthermore, all outcomes in this event are mutually exclusive. 

( ) Pr( )

  (# of outcomes in ) . (probability of each outcome in )

(1 )

X k

k k

k n k

P k A

A A

n
p p

k






 
  
 

 

The binomial coefficient is given by 

!

!( )!

n n

k k n k

 
   

 

As a check, we verify that this probability mass function is properly normalized: 
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0 0

( ) (1 )

( 1 )

1

n n
k n k

X
k k

n

n
P k p p

k

p p



 

 
  

 

  


 

 

In this calculation, we have used the binomial expansion 

0

( )
n

n k n k

k

n

k
    



 
   

 
  

I.8.C. POISSON RANDOM VARIABLE 

Consider a binomial random variable X  where the number of repeated trials n  is very large. In 
that case, evaluating the binomial coefficients can pose numerical problems. If the probability of 
success in each individual trial p  is very small, then the binomial random variable can be well 
approximated by a Poisson random variable. That is, the Poisson random variable is a limiting case 
of the binomial random variable. Formally, let n  approach infinity and p  approach zero in such 
a way that 

lim
n

np 


  

Then the binomial probability mass function converges to the form 

( ) , 0,1, 2,
!

m

XP m e m
m

    

which is the probability mass function of a Poisson random variable. We see that the Poisson 
random variable is properly normalized by noting that 

0

( ) 1X
m

P m



  

The number of customers arriving at a cashier in a store during some time interval may be well 
modeled as a Poisson random variable, as may the number of data packets arriving at a given node 
in a computer network. 

I.8.D. GEOMETRIC RANDOM VARIABLE 

Consider repeating a Bernoulli trial until the first occurrence of the outcome 0 . If X  represents 

the number of times the outcome 1  occurs before the first occurrence of 0 , then X  is a 

geometric random variable whose probability mass function is 

 ( ) , 0,1,2,1 k
XP k p kp   
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We might also formulate the geometric random variable in a slightly different way. Suppose X  
counted the number of trials that were performed until the first occurrence of 0 . Then the 

probability mass function would take on the form 

  1( ) , 1,2,1 k
XP k p kp     

The geometric random variable can also be generalized to the case where the outcome 0  must 

occur exactly m  times. We can derive the form of the probability mass function for the generalized 
geometric random variable from what we know about binomial random variables. 

For the m -th occurrence of 0  to occur on the k -th trial, then the first 1k   trials must have had 

1m   occurrences of 0  and k m  occurrences of 1 . Then 

    th
0 0

1

1 occurrences of  in 1 trials( ) Pr  occurs on the  trial

1
(1 ) (1 )

1

1
(1 ) , , +1,

1

X

k m m

k m m

m kP k k

k
p p p

m

k
p p k m m

m

 

 



  

 
    

 
    



 

This generalized geometric random variable sometimes goes by the name of a Pascal random 
variable or the negative binomial random variable. 

 

*** 
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II. RANDOM VARIABLES, DISTRIBUTIONS, AND DENSITY FUNCTIONS 

II.1. Introduction 

Discrete random variables have just been described by their probability mass functions. While this 
description works fine for discrete random variables, it is inadequate to describe random variables 
that take on a continuum of values. 

In this chapter, we introduce the cumulative distribution function as an alternative description of 
random variables that is appropriate for describing continuous as well as discrete random variables. 
The probability density function is also covered. 

Consider a discrete random variable X  that takes on values from the set 

 0,1 ,2 , ,( 1)N N N N  with equal probability. Then 

1
, 0,1, , 1X

k
P k N

NN
     
 

  

This is the type of random variable that is produced by “random” number generators in software 
packages like MATLAB and Mathematica. In these cases, N  is taken to be a fairly large number 
so that it appears that the random number can be anything in the continuous range [0, 1). Consider 
the limiting case as N  ;  so that the random variable can truly fall anywhere in the interval 
[0,1). Then 

1
lim

0

X
N

k
P

NN 

   
 



 

That is, each point has zero probability of occurring. Yet, something has to occur! This problem is 
common to continuous random variables, and it is clear that the probability mass function is not a 
suitable description for such a random variable. 

II.2. The Cumulative Distribution Function (CDF) 

Definition II-1 

The cumulative distribution function (CDF) of a random variable X   is given by 

 ( ) PrXF x X x   

CDF Properties 

 Since the CDF is a probability, it must take on values between 0 and 1. 
 ( ) 0XF     and ( ) 1XF   . 
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 For    1 2 1 21 2 ( ) ( )X Xx x F x F xX x X x       . This implies that the CDF is a 

monotonic non-decreasing function. 

X
2x1x


1X x


2X x

1 2x X x 

 

         2 12 1 1 2 1 2( ) ( ) PrX XF x F xX x X x x X x x X x          . 

    2 11 2Pr ( ) ( )X XF x F xx X x    . 

Example II.1 

Which of the following mathematical functions can be the CDF of some random variable? 

a. 11 1
( ) tan ( )

2XF x x


   

b.  ( ) 1 ( )x
XF x e u x   

c. 
2

( ) x
XF x e   

d. 2( ) ( )XF x x u x  

To determine this, we need to check that ( ) 0XF   , ( ) 1XF    and that the function is 

monotonically increasing in between. The first two functions satisfy these properties and thus are 
valid CDFs. The third function is decreasing for positive values of x , while the forth function 
takes on values greater than 1 and ( ) 1XF   . 

Let’s return to the computer random number generator that generates N  possible values from the 

set   0,1/ ,2 / , ,   1 /N N N N  with equal probability. The CDF of this random variable is 

illustrated below. 



Mohammad M. Banat – EE 360: Random Signal Analysis 37 

II: Random Variables, Distributions, and Density Functions 

 II.2-The Cumulative Distribution Function 
(CDF) 

 

 

( )XF x
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0.2
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x
 

Figure II.1: CDF of the random variable X  for 10N   

( )XF x
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0.4

0.6

0.8

1.0

x
 

Figure II.2: CDF of the random variable X  for 50N   

( )XF x

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6
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Figure II.3: CDF of the random variable X  for N   

Note that when N    we have 

0, 0

( ) , 0 1

1, 1
X

x

F x x x

x


  
 
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Example II.2 

Suppose a random variable has the value  4, 2.6, 1,3.1,7    with probabilities 

 0.2,0.15,0.3,0.25,0.1 . Sketch the CDF. 

 

In this limiting case, the random variable is a continuous random variable and takes on values in 
the range [0, 1) with equal probability. It is referred to as a uniform random variable. Continuous 
random variables have a continuous CDF, while discrete random variables have a discontinuous 
CDF with a staircase type of function. 
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Example II.3 

Suppose a random variable has a CDF given by  ( ) ( )1 x
XF x u xe  . Find the following 

quantities: 

5 5

Pr( 5) Pr(5 )

1 (5)

1 (1 ) (5)

X

X X

F

e u e 

    
 

   

 

3 7

Pr(3 X 7) Pr(3 X 7)

e e 

    

 
 

     5 7

7

Pr 5 7 (7) (5)Pr(5 7)
Pr( 5 | 7)

Pr( 7) Pr( 7) (7) 1
X X

X

X X F FX e e
X X

X X F e

 



     
     

  
 

For a discrete random variable, and for 1k kx x x     

1

( ) ( ) ( )
k

X X i i
i

F x P x u x x


   

II.3. The Probability Density Function 

Definition II-2 

The probability density function (PDF) of the random variable X  evaluated at the point x  is 

0

0

Pr( )
( ) lim

( ) ( )
lim

( )

X

X X

X

x X x
f x

F x F x

d
F x

dx














  


 




 

II.3.A. PDF PROPERTIES 

( ) 0Xf x   

( ) ( )X X
d

f x F x
dx

  
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( ) ( ) ( )

( )

x x

X X X

X

F x f d f d

f x dx

   
 

 



 


 

 

0

0

0

( ) ( )

Pr

x

X XF x f d

X x

 




 

  

x

( )Xf x

0x

0( )XF x

 

Figure II.4: Area under PDF 

 
( ) ( )

1

X Xf x dx F




 



  (II.1) 

 

( ) ( ) ( )

( ) ( )

Pr( )

b b a

X X X
a

X X

f x dx f x dx f x dx

F b F a

a X b

 

 

 
  

  
 (II.2) 

Example II.4 

Which of the following are valid probability density functions? 

a. ( ) ( )x
Xf x e u x   /1

( ) ( ),  0,x b
Xf bx e u x b

a
a   

b. ( ) x
Xf x e   

c. 2
1

( ) ,  x
Xf ax e

a
   /1

( ) ,  2x b
Xf bx e

a
a   
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d. 
23

( 1), 2
( ) 4

0, otherwise
X

x x
f x

   


 

e. 
1, 0 1

( )
0, otherwiseX

x
f x

 
 


 

f. 
2

( ) 2 ( )x
Xf x xe u x  

The function in b is not properly normalized, and is not a PDF. 

The function in d takes on negative values, and is not a PDF. 

The functions in a, e and f are valid PDFS. 

II.3.B. THE GAUSSIAN (NORMAL) RANDOM VARIABLE 

Definition II-3 

A Gaussian random variable is one whose probability density function can be written in the general 
form 

2

2
( )

2
2

1
( )

2

x m

Xf x e 






  

The Gaussian PDF is centered about the point x m  and has a width that is proportional to  . 

When 0m   and 1  , X  is called a “standard normal” random variable. It is standard practice 

to introduce a shorthand notation to describe a Gaussian random variable  2,X m N . 

2

2
( )

2
2

1
( )

2

x m

XF x e d


 








 


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x

( )Xf x

0
0

0.1

0.2

0.3

0.4

1 2 3 41234  

Figure II.5: PDF of a standard normal random variable 

x

( )Xf x

0

0.05

0.1

0.15

0.2

3 60 93  

Figure II.6: PDF of a normal random variable with mean 3 and variance 4 
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0.2

0.4

0.6

0.8

1.0

x

( )XF x

6 4 2 0 2 4 6 8 10 12  

Figure II.7: CDF of a normal random variable with mean 3 and variance 4 

2

2
( )

2
2

1
( )

2

x m

XF x e d


 








 



 

For a standard gaussian random variable 

2

21
( ) 1 ( )

2

x

XF x e d Q x









  



 

 
2

0

2
erf( )

x

x e d 


   (II.3) 

 

22
erfc( )

1 erf( )
x

x e d

x

 





 

  (II.4) 

 

2

21
( )

2
x

Q x e d








 



 (II.5) 

 ( ) 1X
x m

F x Q

    

 
 (II.6) 
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( )Xf x

x
0x0x

0( )Q x0( )Q x

01 2 ( )Q x

 

Figure II.8: Q function 

0 0( ) 1 ( )Q x Q x    

Example II.5 

A random variable has a PDF given by 

2( 3)
81

( )
8

x

Xf x e





  

3m   , 2  . 

Determine 

 Pr 3 6 Pr( 9 or 3)X X X       

 

   
 

Pr 3 2 Pr( 5 1)

( 1) ( 5)

1 ( 1 3) / 2 1 ( 5 3) / 2

1 (1) 1 ( 1)

Pr( 5) Pr( 1)

( 1) (1)

1 2 (1)

X X

X X

F F

Q Q

Q Q

X X

Q Q

Q

      

   

         
    

     
  
 
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 Pr 2 1 Pr( 1) Pr( 3)

1 (2) (3)

X X X

Q Q

     

  
 

II.3.C. UNIFORM RANDOM VARIABLE 

1
,

( )
0, otherwise

X
a x b

f x b a
   


 

x

( )Xf x

ba

1

b a

 

Figure II.9: PDF of a uniform random variable 

( )XF x

1

ba  

Figure II.10: CDF of a uniform random variable 

II.3.D. EXPONENTIAL RANDOM VARIABLE 

1
( ) ( ), 0

x

b
Xf x e u x b

b


   

( ) 1 ( )
x

b
XF x e u x

 
  
 
 
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( )Xf x

x

0.4

10

0.2

0.1

0.3

52.5 7.5  

Figure II.11: PDF of an exponential random variable with 3b   

x
1052.5 7.5

( )XF x

1

0.75

0.5

0.25

 

Figure II.12: CDF of an exponential random variable with 3b   

II.3.E. LAPLACE RANDOM VARIABLE 

1
( ) , 0

2

x

b
Xf x e b

b


   

1
, 0

2( )
1

1 , 0
2

x

b

X x

b

e x
F x

e x



 
 

 
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( )Xf x

x

0.05

0.1

0.15

0.2

10 5 5 100  

Figure II.13: PDF of a Laplace random variable with 3b   

x
10

( )XF x

10 0

1

0.5

 

Figure II.14: CDF of a Laplace random variable with 3b   

II.3.F. GAMMA RANDOM VARIABLE 

1

( ) ( ), 0, 0
( )

xc
b

X

x
e

b
f x u x b c

b c

  
 
   


 

,
( ) ( )

( )X

x
c

b
F x u x

c

  
 
 


 

1

0

( ) te t dt


     

When   is an integer, 
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( ) ( 1)!, 0       

In other words, 

! ( )     

For integer and non-integer  , 

( 1) ( ), 0         

1

0

( , ) te t dt


       

Special Cases 

1. c  is integer: Erlang Random Variable 

2. 2b   and c  is half integer: 2  Random Variable. 
3. 1c  : Exponential Random Variable. 

II.3.G. ERLANG RANDOM VARIABLE 

1

( ) ( )
( 1)!

xn
b

X

x
e

b
f x u x

b n

  
 
 


 

1

0

( ) 1 ( )
!

m

x n
b

X
m

x

b
F x e u x

m





    
   

 
 
  

  

The Erlang distribution plays a fundamental role in the study of wireline telecommunication 
networks. In fact, this random variable plays such an important role in the analysis of trunked 
telephone systems that the amount of traffic on a telephone line is measured in Erlangs. 

II.3.H. CHI-SQUARED RANDOM VARIABLE 

1 2
( ) ( )

2 ( )

x
c

X c

x e
f x u x

c





 

,
2

( ) ( )
( )X

x
c

F x u x
c

  
 
 

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II.3.I. RAYLEIGH RANDOM VARIABLE 

2

22
2

( ) ( ), 0

x

X
x

f x e u x 



   

2

22( ) 1 ( )

x

XF x e u x
 

    
 

 

The Rayleigh distribution arises when studying the magnitude of a complex number whose real 
and imaginary parts both follow a zero-mean Gaussian distribution. The Rayleigh distribution 
arises often in the study of noncoherent communication systems and also in the study of land 
mobile communication channels, where the phenomenon known as fading is often modeled using 
Rayleigh random variables. 

x
1052.5 7.5

0.2

0.4

0.6

0.8

( )Xf x

 

Figure II.15: PDF of a Rayleigh random variable with 2   
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x

0.25

1.0

0.75

0.5

2 4 6 8 10

( )XF x

 

Figure II.16: CDF of a Rayleigh random variable with 2   

II.3.J. RICIAN RANDOM VARIABLE 

2 2

22
02 2

( ) ( ), 0, 0

x a

X
x ax

f x e I u x a 
 


     

 
 

In this expression, the function 0( )I x  is the modified Bessel function of the first kind of order 

zero, which is defined by 

2
cos( )

0
0

1
( )

2
xI x e d


 


   

Marcum’s Q-function which describes the CDF of a Rician random variable. It is defined by 

2 2

2
0( , ) ( )

z a

Q ze I z dz



  
 


 


 

( ) 1 ,X
a x

F x Q
 
    
 

 

II.3.K. CAUCHY RANDOM VARIABLE 

 2 2
( ) , 0

( )
X

b
f x b

b x a
 

 
 

11 1
( ) tan

2X
x a

F x
b

     
 
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II.4. Conditional Distribution and Density Functions 

Definition II-4 

The conditional cumulative distribution function of a random variable X  conditioned on that the 
event A  has occurred is given by: 

  
|

Pr
( ) Pr( | ) , Pr( ) 0

Pr( )X A

X x A
F x X x A A

A

 
     

Example II.6 

Suppose a random variable X  is uniformly distributed over the interval [0,1)  so that its CDF is 
given by: 

0, 0

( ) , 0 1

1, 1
X

x

F x x x

x


  
 

 

Let 
1

2
A X

   
 

, then 
    

  |

Pr , 1 2
( )

Pr 1 2X A

X x X
F x

X

 



 

      |0 1 2 | 0 ( ) 0X Ax X x X X x x F x           

      |0 1 2 1 2 | 0 1 2 ( ) 2
1 2X A
x

x X x X X x x F x x              

      |1 2 1 2 1 2 ( ) 1X Ax X x X X F x          

Then 

|

0, 0

( ) 2 , 0 1 2

1, 1 2
X A

x

F x x x

x


  
 

 

If  A a X b    and a b , then 

|

0,

( ) ( )
( ) ,

( ) ( )

1,

X X
X A

X X

x a

F x F a
F x a x b

F b F a

x b

 
    
 
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Definition II-5 

The conditional probability density function of a random variable X  conditioned on some event 
A  is 

| |( ) ( )X A X A
d

f x F x
dx

  

 |

( )
,

Pr( )( )

0, otherwise

X

X a X b

f x
a x b

a X bf x 

     


 

Example II.7 

Let X  be a random variable representing the length of time we spend waiting in the grocery store 
checkout line. Suppose the random variable X  has an exponential PDF given by 

1
( ) ( )

x

c
Xf x e u x

c


  

Let 3c  . What is the PDF for the amount of time we spend waiting in line given that we have 
already been waiting for 2 minutes? 

 2A X  . Use equation in Definition II-5 with 2a   and b   . 

2
3Pr( ) 1 (2)XA F e


    

Therefore, 

 

2

3
| 2

3

( ) 1
( ) ( 2) ( 2)

3

x
X

X a X b
f x

f x u x e u x

e




 


     

*** 
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III. OPERATIONS ON A SINGLE RANDOM VARIABLE 

In this chapter we introduce several mathematical operations that can be applied to single random 
variables. 

III.1. Expected Value of a Random Variable 

Definition III-1 

The expected value of a random variable X  which has a PDF ( )Xf x  is defined as 

 

 E ( )X

X

X xf x dx

X













 (III.1) 

 

For a discrete random variable 

 ( ) ( ) ( )X X k k
k

f x P x x x   (III.2) 

 

Then, the expected value of a discrete random variable is 

  E ( )Xk k
k

P xxX   (III.3) 

For example, an exam is held for the 22 students in the 360 summer 2020 class. Grades are 
distributed as follows: 

7 students got 70 

4 students got 80 

2 students got 90 

6 students got 60 

3 students got 50 

870
7 4 2 6 3

22 22 22 22 2

7(70) 4(80) 2(90

.80 90 60 5

) 6(60) 3(50)

22

( ) ( ) ( 0) ( ) ( 68 1
2

)

X
   



     
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Example III.1 

Consider a discrete random variable that has the values  1,2,4,7,11 , with respective probabilities 

 0.35,0.1,0.15,0.2,0.2 . The mean value of this random variable is equal to 

0.35(1) 0.1(2) 0.15(4) 0.2(18)

0.35 0.2 0.6 3.6

4.75

    
   


 

Example III.2 

Consider a random variable that is uniform over the interval [ 4,9] . The mean value of this random 
variable is equal to 

9

4

92

4

2 2

1

13

1

13 2

1 9 ( 4)

13 2 2

2.5

xdx

x










 
   

 




 

Example III.3 

Consider a random variable X  that has the PDF 

, 0 6
( ) 18

0, otherwise
X

x
x

f x
   


 

The mean value of this random variable is equal to 

 
6

2

0

3

1
E

18

1 6

18 3
4

X x dx







 

Example III.4 

Consider a random variable that has an exponential PDF given by 
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1
( ) ( )

x

Xf x e u x



  

 
0

1
E

x

X xe dx




 




  

Example III.5 

Consider a Poisson random variable that has the PMF given by 

( ) , 0,1, 2,
!

k

X
e

P k k
k

 
    

The expected value of this random variable is found as follows: 

 
0

1

1

1

0

E
!

!

( 1)!

!

k

k

k

k

k

k

m

m

e
X k

k

e
k

k

e
k

e
m





















































  

Example III.6 

Consider a Rayleigh random variable with the PDF 

2

22
2

( ) ( )

x

X
x

f x e u x



  

The mean is calculated as follows: 



Mohammad M. Banat – EE 360: Random Signal Analysis 56 

III: Operations on a Single Random Variable 

 III.2-Moments 

 

 

 
2

2
2

2
2

0

0

E

2

2

x

y

x
X e dx

ye dy








 












   

Definition III-2 

Given a random variable X  with PDF ( )Xf x , the expected value of a function ( )g X  of that 

random variable is given by 

  E ( ) ( ) ( )Xg X g x f x dx




   (III.4) 

For a discrete random variable, this definition reduces to 

  E ( ) ( ) ( )k X k
k

g x g x P x  (III.5) 

Theorem III.1 

For any constants a  and b , 

 

 

 

E ( ) ( )

( ) ( )

E

X

X X

aX b ax b f x dx

a xf x dx b f x dx

a X b




 

 

  

 

 



   (III.6) 

  ( ) ( )m m
m m

E g X E g X
 

 
 
   (III.7) 

III.2. Moments 

Definition III-3 

The n th moment of a random variable X  is defined as 
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 ( )n n
XE X x f x dx





      (III.8) 

For a discrete random variable, this definition reduces to 

 ( )n n
k X k

k

E X x P x      (III.9) 

The zeroth moment is simply the area under the PDF and hence must be 1 for any random variable. 

The first moment is what we previously referred to as the mean, while the second moment is the 
mean squared value. 

For some random variables, the second moment might be a more meaningful characterization than 
the first. For example, suppose X  is a sample of a noise waveform. We might expect that the 
distribution of the noise is symmetric about zero (i.e., just as likely to be positive as negative) and 
hence the first moment will be zero. So if we are told that X  has a zero mean, this merely says 
that the noise does not have a bias. On the other hand, the second moment of the random noise 
sample is in some sense a measure of the strength of the noise. 

III.2.A. MEAN SQUARE VALUE 

 

2 2

2 ( )X

X E X

x f x dx




   

 
mean of the square (III.10) 

III.2.B. ROOT MEAN SQUARE (RMS) VALUE 

 
2

rms

2

EX X

X

   



 root of the mean of the square (III.11) 

Example III.7 

Consider a discrete random variable that has the values  1,2,4,7,11 , with respective probabilities 

 0.35,0.1,0.15,0.2,0.2 . The mean square value of this random variable is equal to 

2 2 2 2 2 2E 0.35(1) 0.1(2) 0.15(4) 0.2(7) 0.2(11)

0.35 0.4 2.4 9.8 24.2

37.15

X       
    


 

The RMS value is equal to 
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rms 37.15

6.095

X 


 

Example III.8 

Consider a discrete binomial random variable with the PMF 

( ) (1 ) , 0,1,k n k
X

n
P k p p k

k
 

   
 

  

The first moment (mean) is calculated as follows: 

 
0

1

1

1

1

1
1

0

1
1

0

E (1 )

!
(1 )

!( )!

!
(1 )

( 1)!( )!

( 1)!
(1 )

( 1)!( )!

( 1)!
(1 )

!( 1 )!

1
(1 )

n
k n k

k

n
k n k

k

n
k n k

k

n
k n k

k

n
m n m

m

n
m n m

m

n
X k p p

k

kn
p p

k n k

n
p p

k n k

n
np p p

k n k

n
np p p

m n m

n
np p p

m

np













 




 




 



 
  

 

 


 
 


 

 


 

 

 
  

 














  

The second moment can be calculated as follows: 

2 2

0

E (1 )
n

k n k

k

n
X k p p

k




        
  

Note that we can use the identity 2 ( 1)k k k k    to get 

2

0

0

E ( 1) (1 )

(1 )

n
k n k

k

n
k n k

k

n
X k k p p

k

n
k p p

k









         

 
  

 




 



Mohammad M. Banat – EE 360: Random Signal Analysis 59 

III: Operations on a Single Random Variable 

 III.3-Central Moments 

 

 

The second sum is the mean, which has been calculated the above. The first sum can be calculated 
similarly to the calculation of the mean, resulting in 

0 2

2

2

2 2

2

2

( 1) !
( 1) (1 ) (1 )

!( )!

( 1) !
(1 )

( 1)( 2)!( )!

!
(1 )

( 2)!( )!

( 2)!
( 1) (1 )

( 2)!( )!

2
( 1)

2

n n
k n k k n k

k k

n
k n k

k

n
k n k

k

n
k n k

k

k

n k k n
k k p p p p

k k n k

k k n
p p

k k k n k

n
p p

k n k

n
n n p p p

k n k

n
n n p p

k

 

 









 



  
      


 

  

 
 


  

 

 
    

 







2

2

2
2 2

0

2

(1 )

2
( 1) (1 )

( 1)

n
n k

k

n
m n m

m

p

n
n n p p p

m

n n p

 




 





 
   

 

 





 

Adding the two results above produces 

2 2

2 2

E ( 1)

(1 )

X np n n p

n p np p

     

  
 

Example III.9 

Consider a discrete random variable that has the values  1,2,4,7,11 , with respective probabilities 

 0.35,0.1,0.15,0.2,0.2 . The 3rd moment of this random variable is equal to 

3 3 3 3 3 3E 0.35(1) 0.1(2) 0.15(4) 0.2(7) 0.2(11)

0.35 0.8 9.6 68.6 266.2

345.55

X       
    


 

III.3. Central Moments 

Definition III-4 

The n th central moment of a random variable X  is defined as 
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     ( )n n
X X XE X x f x dx 





        (III.12) 

For discrete random variables, this definition reduces to 

 
    ( )

nn
X k X X k

k

E X x P x       
 (III.13) 

III.3.A. VARIANCE 

 

 22

2 2

2 2

X X

X

E X

E X

X X

 



    
   

 

 (III.14) 

III.3.B. STANDARD DEVIATION 

  2
X XE X     

 (III.15) 

Example III.10 

Consider a discrete random variable that has the values  1,2,4,7,11 , with respective probabilities 

 0.35,0.1,0.15,0.2,0.2 . The mean square value of this random variable is equal to 

2 2 2 2 2 2E 0.35(1) 0.1(2) 0.15(4) 0.2(7) 0.2(11)

0.35 0.4 2.4 9.8 24.2

37.15

X       
    


 

Using the mean from Example III.1, the variance is equal to 

2 237.15 (4.75)

14.5875
X  


  

The standard deviation is equal to 

14.5875

3.819
X 


 

III.4. Conditional Expected Values 

Definition III-5 

The expected value of a random variable X  conditioned on some event A  is 
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   |E | ( )X AX A xf x dx




   (III.16) 

For a discrete random variable, this definition reduces to 

 
  |E | ( )k X A k

k

X A x P x
 (III.17) 

Similarly, the conditional expectation of a function ( )g X  of a random variable X  conditioned on 
the event A  is 

   |E ( ) | ( ) ( )X Ag X A g x f x dx




   (III.18) 

For a discrete random variable, this becomes 

   |E ( ) | ( ) ( )k X A k
k

g X A g x P x  (III.19) 

Example III.11 

Consider a standard Gaussian random variable X . Let  0A X  . 

 
2

|

2

( )
( ) ( )

Pr 0

2
( )

X
X A

x

f x
f x u x

X

e u x









 

Conditioned on A , the expected value is equal to 

   
2

2

0

E | E | 0

2

2

x

X A X X

xe dx









 





 

III.5. Transformations of Random Variables 

III.5.A. MONOTONICALLY INCREASING FUNCTIONS 

Assume that Y  is a continuous, one-to-one, and monotonically increasing function of X . 

( )Y g X  
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1( )X g Y  

 
 

1

1

( ) Pr( )

Pr( ( ) )

Pr ( )

( )

Y

X

F y Y y

g X y

X g y

F g y





 
 

 



 

X

Y

( )y g x

1( )x g y

X x

Y y

 

Then, 

 1( ) ( )Y XF y F g y  

Note that 

 ( ) ( )X YF x F g x  

Differentiating with respect to y  produces 



Mohammad M. Banat – EE 360: Random Signal Analysis 63 

III: Operations on a Single Random Variable 

 III.5-Transformations of Random Variables 

 

 

 

 

 

1

1

1 1

( )

( )

( ) ( ) ( )Y X

X
x g y

X

x g y

d
f y f g y g y

dy

dx
f x

dy

f x
dy

dx





 











 

Example III.12 

Consider a Gaussian random variable X with mean  and variance 2 . A new random variable 
is formed as Y aX b  , where 0a   (so that the transformation is monotonically increasing). 

dy
a

dx
  

y b
x

a


  

( )
X

Y

y b
f

a
f y

a

 
 
   

Substituting 
y b

x
a


 , we get 

 

2

2

2

2 2

2
2

( )

2
2 2

1
( )

2

1

2

y b

a

Y

y a b

a

f y e
a

e
a










 

  
 

 






 

Note that Y  is Gaussian with mean a b   and variance 2 2a  . 

Example III.13 

Let X be an exponential random variable with 2( ) 2 ( )x
Xf x e u x . Let 3Y X . Determine 

( )Yf y . 
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23
dy

x
dx

  

1

3x y  

Solution: 

1

3

1

3

2

2
2

3

( )
( )

3

2
( )

3

X
Y

x y

y

f x
f y

x

e u y

y








 

Note that Y  is not an exponential random variable. 

III.5.B. MONOTONICALLY DECREASING FUNCTIONS 

 
 

1

1

( ) Pr( )

Pr( ( ) )

Pr ( )

1 ( )

Y

X

F y Y y

g X y

X g y

F g y





 
 

 

 

 

X

Y

( )y g x

1( )x g y

Y y

X x

 

Differentiating with respect to y produces 



Mohammad M. Banat – EE 360: Random Signal Analysis 65 

III: Operations on a Single Random Variable 

 III.5-Transformations of Random Variables 

 

 

 

 

 

1

1

1 1

( )

( )

( ) ( ) ( )Y X

X
x g y

X

x g y

d
f y f g y g y

dy

dx
f x

dy

f x
dy

dx





 







 

 

 

 

 

1

1

( )

( )

( )Y X
x g y

X

x g y

dx
f y f x

dy

f x

dy
dx













 

III.5.C. NON-MONOTONIC FUNCTIONS 

x

( )y g x

1x 1 1x dx 2x 2 2x dx 3x 3 3x dx

y

y dy

 

Figure III.1: Non-monotonic function 

In this case, we cannot associate the event  Y y  with events of the form  1( )X g y  or 

 1( )X g y . To avoid this problem, we calculate the PDF of Y directly, rather than first finding 

the CDF. 

Note that 

Pr( ) ( )Yy Y y dy f y dy     
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     
: :i i

i i i i i i
i x X i x X

y Y y dy x X x dx x dx X x
  

   
             
      
   

Since each of the events on the right-hand side is mutually exclusive, the probability of the union 
is simply the sum of the probabilities, so that 

( ) ( ) ( )( )

i i

Y X i i X i i
x X x X

f y f x dx f x dx
  

     

1

1

( )

( )

( ) ( )

( )

i i

i

i

Y X i
x x g y

X i

x

x g y

dx
f y f x

dy

f x

dy

dx
















 

Example III.14 

Suppose X  is a Gaussian random variable with zero mean and variance 2 . Let 2Y X . For any 

positive value of y , 2y x  has two real roots, namely, y . For negative values of y , there are 

no real roots. Using the last result above, 

   

   

( ) ( )
2 2

( )
2

X X
Y

X X

f y f y
f y u y

y y

f y f y
u y

y

  
  
   

  


  

For a zero-mean Gaussian PDF, ( )Xf x  is an even function so that    X Xf y f y   . 

Therefore, 

 

22
2

1
( ) ( )

1
( )

2

Y X

y

f y f y u y
y

e u y
y










 

Hence, Y  is a gamma random variable. 



Mohammad M. Banat – EE 360: Random Signal Analysis 67 

III: Operations on a Single Random Variable 

 III.6-Characteristic Functions 

 

 

Example III.15 

Suppose X  is an exponential random variable with a PDF ( ) ( )x
Xf x e u x . Let 

( )

floor( )

, 1

Y g X

X

k k X k



   

  

The PMF of Y  for 0,1,k    is 

1

( 1)

P ( ) Pr( 1)Y

k
x

k

k k

k k X k

e dx

e e




  

   



 

   

III.6. Characteristic Functions 

Let 

( ) j Xg X e   

The characteristic function of a random variable X  is given by 

 

 ( ) E ( )

( )

X

j x
X

g X

e f x dx






 

 
  (III.20) 

 
1

( ) ( )
2

j x
X Xf x e d 








    (III.21) 

Note that 

  ( ) ( )X Xf x  F   (III.22) 

We can get the PDF of a random variable from its characteristic function through an inverse 
Fourier transform operation. 

Example III.16 

Suppose X  is an exponential random variable with a PDF ( ) ( )x
Xf x e u x . The characteristic 

function of X  is found to be 
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0

( )

1

1

j x x
X e e dx

j






 





  

This result assumes that   is a real quantity. ( ) ( )x
Xf x e u x  

Let ( ) ( )ay
Yf y ae u y . Note that a  must be positive. Note also that ( ) ( )Y Xf y af ay . Using the 

scaling property of the Fourier transform, the characteristic function of Y  is given by 

1
( )Y Xa

a a

a

a j





     
 




  

Let ( )( ) ( )a z b
Zf z ae u z b   . Note that ( ) ( )Z Yf z f z b  . Using the shifting property of the 

Fourier transform, the characteristic function of Z  is given by 

( ) ( ) j b
Z Y

j b

e

ae

a j





 







 




  

Example III.17 

Suppose X  is a binomial random variable with a PDF 
0

( ) (1 ) ( )
n

k n k
X

k

n
f x p p x k

k




 
   

 
 . The 

characteristic function of X  is found to be 

0

( ) (1 ) ( )
n

j x k n k
X

k

n
e p p x k dx

k
 








  
        





   

Interchanging the orders of the summation and integration operators, we get 

0

( ) (1 ) ( )
n

k n k j x
X

k

n
p p x k e dx

k
 




 

 
    

 
   

Using the sifting property of the delta function, 
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0

( ) (1 )
n

k n k j k
X

k

n
p p e

k
 



 
   

 
  

Combining the two terms that are raised to power k  inside the summation operator, 

 

 
0

( ) (1 )

1

n kj n k
X

k

nj

n
pe p

k

p pe





 



 
   

 

  


 

Example III.18 

Suppose X  is a standard gaussian random variable. The characteristic function of X  can be found 
as follows: 

2

2

2

2

2

1
( )

2

1

2

x
j x

X

x j x

e e dx

e dx





















 











 

We complete the square in the exponent to get 

  22

2 21
( )

2

x j

X e e dx








 



 




 

The integrand in the last expression above looks like the PDF of a unit variance Gaussian random 
variable with a mean of j , and since the integral is over all values of x , the integration must be 
unity. However, since x  is a real random variable, it cannot have a complex mean, and the above 
argument is mathematically wrong. 

Nevertheless, with some mathematical manipulations, the integral above can be shown to produce 
an answer of unity. The resulting characteristic function is 

2

2( )X e





   

It can be shown that for a Gaussian random variable with a mean of   and a variance of 2 , the 
characteristic function is 
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2 2

2( )
j

X e
 




   

 

( ) ( )

( )

( )

j x
X X

j x
X

j x
X

d d
e f x dx

d d

d
e f x dx

d

jxe f x dx








 














 
   

 
 












 

( ) ( )j x
X X

d
j xe f x dx

d








     

 
0

( ) ( )

E

X X
d

j xf x dx
d

X








 

  



  

For any random variable whose characteristic function is differentiable at 0  , 

  
0

E ( )X
d

X j
d 


 

     (III.23) 

 
0

E ( ) ( )
k

k k
Xk

d
X j

d 


 

        (III.24) 

Example III.19 

Suppose Y  is an exponential random variable with the PDF ( ) ( )ay
Yf y ae u y . The characteristic 

function of Y  is (see Example III.16): 

( )Y
a

a j



 


 

The 1st derivative of ( )Y   is 

2
( )

( )
Y

d ja

d a j


 
 


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Thus, the 1st moment is 

 
0

2
0

E (

( )

1

Y
d

Y j
d

a

a j

a














  






  

Note that the k th derivative of ( )Y   is 

1

!
( )

( )

k k

Yk k

d j k a

d a j


   


 

Thus, the k th moment is 

0

1
0

E ( ) (

!

( )

!

k
k k

Yk

k

k

d
Y j

d

k a

a j

k

a















     






 

Specifically, suppose the characteristic function is expanded in the form 

 
0

( ) k
X k

k

  



    (III.25) 

Then, 

 E ( ) !k k
kX j k        (III.26) 

Example III.20 

Consider a zero-mean Gaussian random variable X  with variance 2 . The characteristic function 
of X  is (see Example III.18): 

2 2

2( )X e
 




   

Using Taylor series expansion, 
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2 2

0

2
2

0

2
( )

!

( 1)

2 !

n

X
n

n n
n

n
n

n

n

 



 








 
  
  








 

The coefficients of the power series expansion in (III.25) are given by 

2 ,  even
!

2

0,  odd

k
k

k

j
k

k

k





    
    
   



  

Using (III.26), 

!
,  even

2E !
2

0,  odd

k

k

k
k

kX

k

              


 

III.7. Moment Generating Functions (MGF) 

The moment generating function ( )XM u  of a nonnegative random variable X  is 

( ) uXg X e  

 

0

( ) E

( )

uX
X

ux
X

M u e

f x e dx


   

 
  (III.27) 

 
0

E ( )
k

k
Xk

u

d
X M u

du 

      (III.28) 
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0

E
( )

!

k
k

X
k

k
k

k

X
M u u

k

m u








 
 






  (III.29) 

Example III.21 

Consider an Erlang random variable with a PDF of the form  

1

( ) ( )
( 1)!

n x

X
x e

f x u x
n

 



 

1
( )

(1 )
X n

M u
u




 

The first two moments are found as follows: 

 
0

1
0

1
E

(1 )

(1 )

n
u

n
u

d
X

du u

n

u

n














  

2
2

2
0

2
0

1
E

(1 )

( 1)

(1 )

( 1)

n
u

n
u

d
X

du u

n n

u

n n






    






 

 

Using the first two moments, the variance can be found to be equal to 

   22 2

2 2

2

E E

( 1)

X X X

X X

n n n

n

    

 

  


  

The k th moments is found to be equal to 
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( 1) ( 1)
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k n
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d
X

du u

n n n k

n k

n



    

   
 




  

Theorem III.2 

Markov Inequality 

Suppose that X  is a nonnegative random variable, then 

   
0

0

E
Pr

X
X x

x
   

Proof: 

For nonnegative random variables, the expected value is 

 

 

0

0

0

0

0

0

0

0 0

E ( )

( ) ( )

( )

( )

Pr

X

x

X X
x

X
x

X
x

X xf x dx

xf x dx xf x dx

xf x dx

x f x dx

x X x











 





 



 





  

Example III.22 

Suppose that the average life span of a person was 75 years. The probability of a person living to 
be 110 years old would then be bounded by 

  75
Pr 110

110
0.6818

X  


 

Of course, we know that in fact very few people live to be 110 years old, and hence, this bound is 
almost useless to us. 



Mohammad M. Banat – EE 360: Random Signal Analysis 75 

III: Operations on a Single Random Variable 

 III.7-Moment Generating Functions (MGF) 

 

 

Theorem III.3 

Chebyshev’s Inequality 

Let X  be a random with mean X  and variance 2
X . The probability that X  takes on a value 

that is removed from the mean by more than 0x  is given by 

 
2

0 2
0

Pr    X
XX x

x

  

Proof: 

Chebyshev’s inequality is a direct result of Markov’s inequality. Note that the event 

 0 XX x  is equivalent to the event   2 2
0 XX x . Applying Markov’s inequality to 

the latter event results in 

     2

2 2
0 2

0

2

2
0

E
Pr

 
   



X

X

X

X
X x

x

x





 

Note that Chebyshev’s inequality gives a bound on the two-sided tail probability, whereas 
Markov’s inequality applies to the one-sided tail probability. Also, Chebyshev’s inequality can be 
applied to any random variable, and not only to non-negative random variables. 

 

 

*** 
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IV. PAIRS OF RANDOM VARIABLES 

IV.1. Joint Cumulative Distribution Functions 

Definition IV-1 

The joint cumulative distribution function of a pair of random variables X  and Y  is 

 , ( , ) Pr( , )X YF x y X x Y y     (IV.1) 

That is, the joint CDF is the joint probability of the two events  X x  and  Y y . 

IV.1.A. JOINT CDF PROPERTIES 

 ,0 ( , ) 1X YF x y    (IV.2) 

 , , ,( , ) ( , ) ( , ) 0X Y X Y X YF y F x F         (IV.3) 

 , ( , ) 1X YF      (IV.4) 

 
,

,

( , ) ( )

( , ) ( )

X Y Y

X Y X

F y F y

F x F x

 

 
  (IV.5) 

For 1 2x x  and 1 2y y ,    1 1X x Y y    is a subset of    2 2X x Y y    so that 

   , 1 1 , 2 2, ,X Y X YF x y F x y . 

 XF x  and  YF y  are referred to as the marginal CDFs of X and Y, respectively. 
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   , 1 1 , 2 2, ,X Y X YF x y F x y  

 
1 2 1 2

, 2 2 , 1 2 , 2 1 , 1 1

Pr( , )

( , ) - ( , ) - ( , ) ( , )

0

X Y X Y X Y X Y

x X x y Y y

F x y F x y F x y F x y

   
 



  (IV.6) 

 

IV.2. Joint Probability Density Functions 

Definition IV-2 

The joint probability density function of a pair of random variables X  and Y  evaluated at the 
point ( , )x y  is given by 

 
2

, ,( , ) ( , )X Y Y Yf x y F x y
x y



 

  (IV.7) 

Based on (IV.7), 

 , ,( , ) ( , )
y x

X Y X YF x y f d d   
 

     (IV.8) 
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IV.2.A. JOINT PDF PROPERTIES 

 , ( , ) 0X Yf x y    (IV.9) 

 , ( , ) 1X Yf x y dxdy
 

 

    (IV.10) 

 

,

,

( ) ( , )

( , )

X X Y

x

X Y

F x F x

f x y dxdy


 

 

  
  (IV.11) 

,

( ) ( ) ( )

( , )

X X Y

X Y

d
f x F x f y

dx

f x y dy






 
 

 ,( ) ( , )Y X Yf y f x y dx




    (IV.12) 

 
2 2

1 1

1 2 1 2 ,Pr( , ) ( , )
x y

X Y
x y

x X x y Y y f x y dxdy         (IV.13) 

   ,Pr ( , ) ( , )X Y
A

X Y A f x y dxdy     (IV.14) 
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Example IV.1 

Suppose X  and Y  are jointly uniformly distributed over the unit circle ( 1r  ). That is, , ( , )X Yf x y  

is equal to a constant c  over all the points ( , )x y  that satisfy 2 2 1x y  : 

2 2

,
, 1

( , )
0, otherwise

X Y
c x y

f x y
   


 

2 1c r   

The constant c  can be found as follows: 

2 2 1

1

1

x y

cdxdy

c


 






  

2

2

,

1

1

2

( ) ( , )

1

2
1 , 1

X X Y

x

x

f x f x y dy

dy

x x











 





  



   

22
( ) 1 , 1Yf y y y


    

Example IV.2 

Let 

2 2

2 2

2
,

2 2

1
( , )

2

1 1

2 2

x y

X Y

x y

f x y e

e e



 




 





 

The probability that the point ( , )x y  falls inside the unit circle is calculated as follows: 
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2 2

2 2 2

1

1
Pr( 1)

2

x y

x y

X Y e dxdy





 
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Converting the double integral to polar coordinates, 

2

2

2 1
2 2 2

0 0

1
2

0

1

2

1
Pr( 1)

2

1

r

r

X Y re drd

re dr

e












  



 

 

   

 

2
,

2

1
( , ) ( ) ( )

2

1
( ) ( )

2

y
x

X Y

y
x

f x y e u x u y

e u x e u y

   
 






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Definition IV-3 

The joint probability mass function for a pair of discrete random variables X  and Y  is given by 

    , ( , ) PrX Y m n m nP x y X x Y y    . 

IV.2.B. PMF PROPERTIES 

 ,0 ( , ) 1X Y m nP x y    (IV.15) 

 ,
1 1

( , ) 1
M N

X Y m n
m n

P x y
 

   (IV.16) 

 ,
1

( , ) ( )
N

X Y m n X m
n

P x y P x


   (IV.17) 

 ,
1

( , ) ( )
M

X Y m n Y n
m

P x y P y


   (IV.18) 

   ,
( , )

Pr ( , ) ( , )X Y
x y A

X Y A P x y


     (IV.19) 

Example 

Let X  be the number on the upper face of a fair die after throwing it. Let Y  be the number on the 
upper face of another fair die after throwing it. Let event 

   3,  is even (1,2), (2, 2), (1, 4), (2,4), (1,6), (2,6)A X Y   . 

  6 1
Pr ( , )

36 6
X Y A   . 

 , ,
1 1

( , ) ( , ) ( ) ( )
M N

X Y X Y m n m n
m n

f x y P x y x x y y 
 

     (IV.20) 

 , ,
1 1

( , ) ( , ) ( ) ( )
M N

X Y X Y m n m n
m n

F x y P x y u x x u y y
 

     (IV.21) 
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IV.3. Conditional CDFs, PMFs and PDFs 

IV.3.A. DISCRETE RANDOM VARIABLES 

 
,

|

Pr( , )
Pr( | )

Pr( )

( , )
( | )

( )
X Y

X Y
Y

X x Y y
X x Y y

Y y

P x y
P x y

P y

 
  




  (IV.22) 
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IV.3.B. CONTINUOUS RANDOM VARIABLES 

 ,
|

( , )
( | )

( )
X Y

X Y
Y

f x y
f x y

f y
   (IV.23) 

 

IV.4. Expected Values Involving Joint Random Variables 

   ,E ( , ) ( , ) ( , )X Yg X Y g x y f x y dxdy
 

 

     (IV.24) 

For discrete random variables, 

   ,( , ) ( , ) ( , )m n X Y m n
m n

E g X Y g x y P x y   (IV.25) 
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Definition IV-4 

The correlation between two random variables is defined as 

 

 ,

,

E

( , )

X Y

X Y

R XY

xyf x y dxdy
 

 



  
  (IV.26) 

Two random variables that have a correlation of zero are said to be orthogonal. 

Definition IV-5 

The covariance between two random variables is 

 
 

,

( , ) ( )( )X Y

X Y X Y

Cov X Y E X Y

R

 
 

  

 
  (IV.27) 

Definition IV-6 

The correlation coefficient of two random variables is defined as 

 
Cov( , )

XY
X Y

X Y
 

   (IV.28) 

 1XY    (IV.29) 

   |E ( ) | ( ) ( | )X Yg X Y g x f x y dx




    (IV.30) 

Definition IV-7 

The joint characteristic function is defined as 

 1 2( )
, 1 2( , ) E j X Y

X Y e           (IV.31) 

 
1 2

, 1 2 0
1 2

( ) ( , )
m n

m n m n
X Ym n

E X Y j
 

 
 


 

        
  (IV.32) 

Definition IV-8 

The joint MGF is defined as 

 1 2
, 1 2( , ) E u X u Y

X YM u u e       (IV.33) 



Mohammad M. Banat – EE 360: Random Signal Analysis 86 

IV: Pairs of Random Variables 

 IV.5-Independent Random Variables 

 

 

 
1 2

, 1 2 0
1 2

( , )
m n

m n
X Ym n u u

E X Y M u u
u u  

      
  (IV.34) 

If      E E EXY X Y , then X  and Y  are uncorrelated. 

If  E 0XY  , then X  and Y  are orthogonal. 

IV.5. Independent Random Variables 

 
, ( , ) Pr( , )

Pr( ) Pr( )

( ) ( )

X Y

X Y

F x y X x Y y

X x Y y

F x F y

  

  


  (IV.35) 

 , ( , ) ( ) ( )X Y X Yf x y f x f y   (IV.36) 

Note that when X  and Y  are independent then 

 
,

|
( , )

( | )
( )

( )

X Y
X Y

Y

X

f x y
f x y

f y

f x





  (IV.37) 

and 

      E E EXY X Y   (IV.38) 

 

   , E EX Y

X Y

R X Y

XY

 






 (IV.39) 

 ,( , )

0

X Y X YCov X Y R   


 (IV.40) 
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Theorem IV.1 

Let X  and Y  be two independent random variables and consider forming two new random 
variables 1 1( )U g X  and 2 2 ( )U g Y . These new random variables 1U  and 2U  are also 

independent. 

IV.6. Transformations of Pairs of Random Variables 

IV.6.A. PDF OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES 

Let Z X Y  , then 

 
( )

( ) E

E

E E

( ) ( )

j Z
Z

j X Y

j X j Y

X Y

e

e

e e





 



 



    
   
       

  

  (IV.41) 
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Then 

 

( ) ( ) ( )

( ) ( )

Z X Y

X Y

f z f z f z

f z f d  




 

 
  (IV.42) 

 

IV.6.B. PDF OF FUNCTIONS OF TWO INDEPENDENT RANDOM VARIABLES 

Let ( , )Z g X Y , then 

 

( ,

( , )
,

( ) E

( , )

j g X Y
Z

j g x y
X Y

e

e f x y dxdy







 

 

    

  
  (IV.43) 

Then 

 

 1( ) ( )

1
( )

2

Z Z

j z
Z

f z

e d



 









 

 

F

  (IV.44) 
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Next, our attention moves to solving a slightly more general class of problems. Given two random 
variables X  and Y , suppose we now create two new random variables W  and Z  according to 
some 2×2 transformation of the general form 
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 1

2

( , )

( , )

Z g X Y

W g X Y




  (IV.45) 

 

, ,

,

( , ) ( , )

( , )

Z W X Y

X Y

x y
f z w f x y J

z w

f x y

z w
J

x y

 
  

 


 
 
 

  (IV.46) 

 det

x y
x y z zJ
z w x y

w w

  
            
   

  (IV.47) 

 det

z z

z w x y
J

x y w w

x y

  
          
   

  (IV.48) 
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*** 
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V. RANDOM PROCESSES 

V.1. Introduction 

Definition V-1 

A random process is a function of the elements of a sample space S , as well as another independent 
variable t . Given an experiment E  with sample space S , the random process ( )X t  maps each 
possible outcome S   to a function ( , )x t   as specified by some rule. 

Example V.1 

Suppose an experiment consists of flipping a coin. If the outcome is heads H  , the random 

process takes on the functional form 0( ) sin( )Hx t t ; whereas if the outcome is tails T  , the 

realization 0( ) sin(2 )Tx t t  occurs. 

Example V.2 

Now suppose that an experiment results in a random variable A  that is uniformly distributed over 
[0,1) . A random process is then constructed according to 0( ) sin( )X t A t . Since the random 

variable is continuous, there are an uncountably infinite number of realizations of the random 
process. 

The mean value of ( )X t  is calculated as follows: 

   
 

0

0

0

E ( ) E sin( )

E sin( )

1
sin( )

2

X t A t

A t

t













  

Example V.3 

Consider the experiment of rolling a standard die and assigning the number on the top face to 
random variable Z . Let a discrete random sequence be defined as ( ) ( 1)X n X n Z   , where 

(0) 0X  . A possible realization of ( )X n  is ( ) 0,3, 4,10,12,17,x n   . 

Exercise V.1 

 Determine the mean value of ( )X n  in Example V.3 above. 

   
   

E ( ) E ( 1)

E ( 1) E

X n X n Z

X n Z

  

  
 

 E (0) 0X   
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     
 

E (1) E (0) E

E

3.5

X X Z

Z

 





 

     
 

E (2) E (1) E

3.5 E

7

X X Z

Z

 

 



 

 E ( ) 3.5X n n  

 Determine the mean square value of ( )X n  in Example V.3 above. 

 Determine the variance of ( )X n  in Example V.3 above. 

 Replace Z  in Example V.3 above with a uniform discrete random variable that takes its values 
from the set  1, 3  , then determine the mean, mean square and variance of ( )X n . 

Example V.4 

Let mZ  be a Gaussian random variable with a mean m  and a variance 2
m , for 0,1, 2,m   . 

Let a random sequence be defined as 
1

0

( )
n

m
m

X n Z



  . The PDF of ( )X n  is Gaussian with a mean 

1

( )
0

n

X n m
m

 



   and a variance 

1
2 2

( )
0

n

X n m
m

 



  . If m   and 2 2

m   (both are constants), 

then the PDF of the random process ( )X n  is 

2

2
( )

2
2

1
( )

2

x n

n
Xf x e

n




 


   
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Definition V-2 

The autocorrelation function  1 2 1 2( , ) E ( ) ( )XXR t t X t X t  of a continuous random process ( )X t  

is defined as 

 

 

1 2

1 2 1 2

1 2 , 1 2 1 2 1 2

( , ) E ( ) ( )

( , ; , )

XX

X X

R t t X t X t

x x f x x t t dx dx
 

 



  
  (V.1) 
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When 

1.  E ( )X t  is not function of t , and 

2. , ( , )X XR t t   function of only  , 

The process is classified as wide-sense stationary (WSS). 
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If the crosscorrelation is zero, the processes are orthogonal. 

V.2. Stationary and Ergodic Random Processes 
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DEFINITION 8.8: A WSS random process is ergodic if ensemble averages involving the process 
can be calculated using time averages of any realization of the process. Two limited forms of 
ergodicity are 

(1) ergodic in the mean:  ( ) E ( )x t x t  ; 

(2) ergodic in the autocorrelation:  ( ) ( ) ( ) ( )x t x t E x t x t    . 
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This also is exactly the same expression obtained for the ensemble averaged autocorrelation 
function. Hence, this process is also ergodic in the autocorrelation. 

V.3. Properties of the Autocorrelation Function 

 
2(0) E ( )XX

X

R X t

P

   


  (V.2) 

 ( ) ( )XX XXR R     (V.3) 

 ( ) (0)XX XXR R    (V.4) 
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V.4. Power Spectral Density 

 

 

 

 

 


