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SYLLABUS

Course Catalog

3 Credit hours (3 h lectures). Discrete and continuous time systems: classifications, convolution and impulse response.
Orthogonal expansions and Fourier series. Fourier transform. Laplace transform. Z-transform. System function.
Computer applications.

Textbook

Signals, Systems, and Transforms, Charles L. Philips, Fourth Edition, Printice Hall , ISBN 0-13-206742-0.

References

1. Roberts & Gasbel. Linear Signals & Systems. 3™ ed.

Instructor
Instructor: Dr. Mohammad M. Banat
Email Address: banat@just.edu.jo

Prerequisites

Prerequisites by topic Circuits, Linear Algebra
Prerequisites by course EE 210, EE 240
Prerequisite for EE 360

Topics Covered

Week Topics Chepters in Text
1-4 Continuous Time Signals and Systems 3
5 Fourier Series 4
6-8 Fourier Transform and Applications 5-6
9 Laplace Transform 7
10-13 | Discrete Time Signals and Systems 9-10
14 z Transform 11

0-Course Catalog
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Objectives and Qutcomes

Objectives Outcomes

1. Classifying signals and 1.1. Defining basic operations such as time scale, time shift, time
systems as represented by their reverse, and combinations of these operations for signals. [1]
mathematical models [1] 1.2. Learning properties and classification of continuous-time as well

as discrete-time signals [1]
1.3. Determine continuous- as well as discrete-time system
characteristics (e.g., causality, linearity, time-invariance, etc.) [1]

2. Analyzing both continuous and 2.1. Determining & applying differential equation models for linear
discrete linear time-invariant time-invariant systems and circuits ( continuous- and discrete-
systems in the time domain [1] time) [1]

2.2. Using graphical and analytical methods to compute a convolution
(continuous time and discrete-time) [1]

3. Applying the Fourier 3.1. Calculating Fourier series expansions for periodic continuous-time
representation of signals and signals and plot line spectra [1]
systems to analyze continuous 3.2. Implementing the forward and inverse Fourier transforms to
linear systems in the frequency analyze signals and systems [1]
domain [1] 3.3. Obtaining frequency response of a system using Fourier Transform

(1]
3.4. Using Fourier transform methods for analysis of linear systems [1]

4.  Implementing the Laplace 4.1. Performing Laplace transform for signals [1]
representation of signals and 4.2. Identifying system transfer function [1]
systems in analyzing linear 4.3. Using Laplace transform methods for analysis of continuous-time
systems[1] linear systems [1]

5. Applying the discrete Fourier 5.1. Calculating the discrete-time Fourier transform of signals [1
representation and Z- 5.2. Identifying the Z-transform for discrete-time signals and plotting
transform  of signals and its region of convergence [1]
systems to analyze continuous 5.3. Differentiating between bilateral and unilateral Z-transforms [1]
linear systems in the frequency 5.4. Using the forward Z-transform and inverse Z-transform to analyze
domain [1] signals and systems [1]

Evaluation

Assessment Tool Expected Due Date Weight
Exam 1 20%
Exam 2 20%
Class Work 20%
Final Exam 60%

Contribution of Course to Meeting the Professional Component

The course contributes to equip students with basic knowledge and skills in applied probability and random
processes.

0-Objectives and Outcomes
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RELATIONSHIP TO PROGRAM OQOUTCOMES (%)

A

B

C D

E

F

RELATIONSHIP TO ELECTRICAL ENGINEERING PROGRAM OBJECTIVES

PEO1

PEO2

PEO3

PEO4 | PEOS

0-Contribution of Course to Meeting the
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I. INTRODUCTION

Engineers must model two distinct physical phenomena. The first is physical systems, which can
be modeled by mathematical equations. For example, continuous-time, or analog, systems
(systems that contain no sampling) can be modeled by ordinary differential equations with constant
coefficients. A second physical phenomenon to be modeled is called a signal. Physical signals are
modeled by mathematical functions. One example of a physical signal is the voltage that is applied
to the speaker in a radio. Another example is the temperature at a designated point in a particular
room. This signal is a function of time, since the temperature varies with time. We can express this
temperature as

Temperature at a point = 9(¢) (L.1)

where () has the units of, for example, degrees Celsius. To be more precise in this example, the
temperature in a room is a function of time and of space.

Temperature at a point = 6(x, y, z, 1) (1.2)

where the point in a room is identified by the three space coordinates x, y, and z. We limit
signals to having one independent variable. In general, this independent variable will be time ¢ .

Signals are divided into two natural categories. The first category to be considered is continuous-
time signals, or simply, continuous signals. The second category for signals is discrete-time
signals, or simply, discrete signals.

A continuous-time signal is defined for all values of time. A continuous-time signal is also called
an analog signal. A continuous-time system is a system in which only continuous-time signals
appear. There are two types of continuous time signals. A continuous-time signal x(z) can be a

continuous-amplitude signal, for which the time-varying amplitude can assume any value. A
continuous-time signal may also be a discrete-amplitude signal, which can assume only certain
defined amplitudes. An example of a discrete-amplitude continuous-time signal is the output of a
digital-to-analog converter. For example, if the binary signal into the digital-to-analog converter

is represented by eight bits, the output-signal amplitude can assume only 28 =256 different
values.

A discrete signal is defined at only certain instants of time. For example, suppose that a signal
f(¢) 1s to be processed by a digital computer. Since a computer can operate on only a number and

not a continuum, the continuous signal must be converted into a sequence of numbers by sampling.
This sequence of numbers is called a discrete-time signal. Like continuous-time signals, discrete-
time signals can be either continuous amplitude or discrete amplitude. A discrete-time system is a
system in which only discrete-time signals appear.

0-Contribution of Course to Meeting the
Professional Component
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I1. Transformations of Continuous-Time Signals

1.1.A. TIME TRANSFORMATIONS

Time Reversal
y(t) = x(=1)
The time reversal operation is shown in Figure I.1.

x(f) y(t) =x(=0)

kK= 1+~

Figure L.1: Time reversal
Time Scaling
y(t)=x(at), aelR
The time scaling operation is shown in Figure 1.2.
Time Shifting
() =x(t 1)

General Transformation

y(t) =x(at+b)

Let
T=at+b
Then
T b
t=———
a a

(L3)

(1.4)

(L5)

(L6)

1.7)

(L8)

I.1-Transformations of Continuous-Time

Signals
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x(¢)

yo(t) = x(0.10)
l —

—10 0 10 20 t

-1

Figure 1.2: Time scaling

Example

Let
t
y(t)= x(l _Ej

t=2-27

Then

I.1-Transformations of Continuous-Time
Signals
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-
x(t) A
1
l T
-1 0 1 2 t
| | | |
4 2 0 -2 t=2-27
(a)
yv(t) = x(1 — t/2) A
1
-2 0 2 4 t

Figure 1.3: Time transformation example

[1.1.B. AMPLITUDE TRANSFORMATIONS
y(t)=ax(t)+b
where a and b are constants.

Example

(1.9)

Let
y(t)=3x(t)-1

I.1-Transformations of Continuous-Time

Signals
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(1) 4 ¥(0)
1 2
: -1
~1 0 1 2 r
(a)

(c)

Figure 1.4: Amplitude transformation example

I.1-Transformations of Continuous-Time
Signals
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Example

Next we consider the signal
0)=3x1-L1]-1
4 2

which has time transformation and amplitude transformation. To plot this transformed signal, we
first transform the amplitude axis, as shown below. The t-axis is redrawn to facilitate the time
transformation.

r=1-L=t=2-2¢

3x(r)—1 /4
2
1 L
| .
-1 0 / 1 2
-1
| | | | .
4 2 0 -2 t=2-27

Figure 1.5: Time and amplitude transformation

The signal is then plotted on the 7 -axis, as shown below.

3x(l — t/2)—1,
2

-2 0 \2 ¢
— —_1 ——

Figure 1.6: Time and amplitude transformation

I.1-Transformations of Continuous-Time
Signals
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L.2. Sional Characteristics

1.2.A. EVEN AND ODD SIGNALS

By definition, the function (signal) is even if

xo (1) =, (~1)

11

(1.10)

An even function has symmetry with respect to the vertical axis; the signal for # <0 is the mirror
image of the signal for #>0. The function x(s)=cos(w,¢) is an even function because

cos(wt) = cos(—awt).
By definition, a function is odd if

X0 () ==x, (1)

(L11)

An odd function has symmetry with respect to the origin. The function x(¢)= sin(a)ot) is odd

because sin (@)= —sin(-wot).

xe(t) A

Any signal can be expressed as the sum of an even part and an odd part; that is,

x(t)=x,(t)+x,(2)

(1.12)

1.2-Signal Characteristics
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Note that
x(~1) =2, (0) =2, (1) (L13)
Adding (I.12) and (1.13) and dividing by 2 yields
x,(t)= %[x(t) + x(—t)] (I.14)
Subtracting (I.13) from (I.12) and dividing by 2 yields

x,(t)= %[x(t)—x(—t)] (I.15)

The average value A, of a signal x(¢) is defined as

T
1
A. = lim — | x(O)dt I.16
x 7 () (L.16)

T—
i

The average value of a signal is contained in its even function, since the average value of a bounded
odd function is zero.

Even and odd functions have the following properties:

1. The sum of two even functions is even.
2. The sum of two odd functions is odd.
3. The sum of an even function and an odd function is neither even nor odd.
4. The product of two even functions is even.
5. The product of two odd functions is even.
6. The product of an even function and an odd function is odd.
Example

Consider the signal x(¢):

x(1)

Following is the time-reversed signal x(—¢):

1.2-Signal Characteristics
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x(—1)

1.2-Signal Characteristics
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The two signals are added and scaled in amplitude by 0.5 to yield the even signal x,(?):

X (1)

Next, x(—¢) is subtracted from x(z), and the result is amplitude scaled by 0.5 to yield the odd
signal x,(?):

x,(1)

— 0.5

=05

1.2.B. PERIODIC SIGNALS
A continuous-time signal x(z) is periodic if for all ¢ and positive 7 we have
x(t+T)=x(t) (1.17)
A signal that is not periodic is said to be aperiodic.
Constant 7 is the period of x(¢) . Replacing ¢ with #+7" in (1.17), we get

x(t+2T)=x(t+T)

1.18
— (1) (1.18)
We can repeat the above step until we get for any integer n
x(t+nT)=x(t) (I1.19)

Hence, a periodic signal with period 7 is also periodic with period n7 , which means that a
periodic signal has infinitely many periods that are all integer multiples of 7. Since 7 is the

smallest period of x(¢), it is called the fundamental period. Symbol 7, is often used to denote the
fundamental period.

1.2-Signal Characteristics
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T} is usually measured in seconds. The fundamental frequency (measured in Hz) is given by

fo== (120)

The fundamental angular frequency (measured in rad/s) is given by

2 (L21)
TO

x(1)

Other periodic signals are:

o x.(f)=coswyt.
o x,(t)=sinwy.

® x(¢) = constant . Period is undefined.

Example

Power supplies that convert an ac voltage (sinusoidal voltage) into a dc voltage (constant voltage)
are required in almost all electronic equipment that doesn’t use batteries.

Following is a half-wave rectified signal:

v(t)

m

-Ty 0 Ty/2 Ty 2T, t

This signal is generated from a sinusoidal signal by replacing the negative half cycles of the
sinusoid with a voltage of zero. The positive half cycles are unchanged.

1.2-Signal Characteristics




Mohammad M. Banat - EE 260: Signal and System Analysis 16

I: Introduction

Following is a full-wave rectified signal:

v(t)

V

m

—2T, =T, 0 T, 2T, 3T, 47, t

This signal is generated from a sinusoidal signal by the amplitude reversal of each negative half
cycle. The positive half cycles are unchanged. Note that the period of this signal is one-half that
of the sinusoid and, hence, one-half that of the half-wave rectified signal.

The sum of continuous-time periodic signals is periodic if and only if the ratios of the periods of
the individual signals are ratios of integers. If a sum of N periodic signals is periodic, the
fundamental period can be found as follows

1. Convert each period ratio T, /Ty, for n=2,---,N to aratio of integers, where T is the

period of the first signal considered and 7, is the period of one of the other N —1 signals.

If one or more of these ratios is not rational, then the sum of signals is not periodic.
2. Eliminate common factors from the numerator and denominator of each ratio of integers.

3. The fundamental period of the sum of signals is 7y = kT,; where k is the least common
multiple of the denominators of the individual ratios of integers.

Example

Consider the signals

Xl(t):COS3.5t, T()l:z_;;
x,(t) =sin 2, Tozz%”
7 2r
x:(t)=2=cos—t, T =—"
3(1) 6 03 7/6
Let
V(1) = x1(2) +x, (1) + x3(7)
Then

N=3

1.2-Signal Characteristics
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Loy = 4 (ratio of integers), Tor = 7 (ratio of integers)
Toy 03
v(t) is periodic.
Tor _1

Least common multiple of denominators is ky =21.

Fundamental period of v(¢)

1S

TO = kOTOI
= 21><2—7[
3.5
=12z
v(t)
0 20 40 60 t

1.3. Sinusoidal Signals

Continuous-time systems can be modeled using ordinary linear differential equations with constant
coefficients. A signal that appears often in these models is one whose time rate of change is directly
proportional to the signal itself. An example of this type of signal is the differential equation

%x(t) =ax(t)

(1.22)

where a is constant. The solution of this equation is the exponential function x(¢) = x(0)e for

t 2 0. An example is the current in an RL circuit.

L1.3-Sinusoidal Signals
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Thus,
a=-R/L

R
-t

i(t)=i(0)e L
where i(0) is the initial current.
Consider the signal
x(t)=Ce® (1.23)

Let’s assume that C and a are generally complex. Complex signals cannot appear in physical
systems. However, the solutions of many differential equations are simplified by assuming that
complex signals can appear both as excitations and in the solutions. Then, in translating the results
back to physical systems, only the real part or the imaginary part of the solution is used.

An important relation that is often applied in analyses which involve complex exponential
functions is Euler’s relation, given by

e’? =cos@+ jsin6 (1.24)

e 7% =cos@—jsind (1.25)

Adding (I.24) and (1.25), and dividing by 2, we get

o . —jo
cosd = % (1.26)

Subtracting (1.25) from (1.24), and dividing by 2, we get
. el? —e™/0
sinf =——— (1.27)
j2
L.3-Sinusoidal Signals
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The last four relations are so useful in signal and system analysis that they should be memorized.

A complex quantity 4 can be represented in terms of its real and imaginary parts as follows

where Ap and A; are, respectively, the real and imaginary parts of 4, and are given by

Note that both Az and A, are real quantities.
A complex quantity 4 can also be represented in polar form as follows

A=|4|2¢,

where |A| and ¢, are, respectively, the magnitude and phase of 4, and are given by

|4|=+Af + 4]

A
¢ 4 =tan -l (—]]
Ap

If we apply the above to the complex exponential function in (1.24), we have

Azejg

=cosf+ jsinf

Substituting (I1.34) into (1.32) and (1.33), we get

|A|:\/c0s29+sin20
=1

_1( siné
= tan
P4 (cos HJ
=0

The complex exponential can then be expressed in polar form as

el =1,0

(1.28)

(1.29)

(1.30)

(131)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(137)

L1.3-Sinusoidal Signals
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I.3.A. CASE 1: REAL C AND a
The signal x(t) = Ce® is plotted below for C >0 with >0, a<0 and a=0.
Ceut‘ Ceut Ce(lt A

C a>0 g2 cl 2a=0

Y
Y

For a>0, the signal magnitude increases monotonically without limit with increasing time. For
a <0, the signal magnitude decreases monotonically toward zero as time increases. For a =0, the
signal is constant.

For a<0, the signal decays toward zero, but does not reach zero in finite time. To differentiate
between exponentials that decay at different rates, we let

= (138)

where 7> 0. Substituting (1.38) into (1.23), the signal x(z) can be written in the form

x(t) = Ce“
t (139)

=Ce *
The constant parameter 7 is called the time constant of the exponential.

The time constant of an exponential signal is illustrated in the below figure.

Ce_[/T‘

=

L1.3-Sinusoidal Signals




Mohammad M. Banat - EE 260: Signal and System Analysis 21

I: Introduction

Example

The signal x(¢) =3e * has a time constant 7 =0.25 s.

Exercise

t

What is the value of the signal x(¢) = x(0)e 7 when ¢ = r ? What is the value of x) ?

x(0)

The time derivative of x(¢) in (1.39) is given by

t
%x(l‘) = —ge 4 (1.40)

Evaluating the derivative at # =0 yields
4 =-C (L41)
dt =0 T

Equation (1.41) gives the rate of change of x(¢) at # =0. Note that, according to (1.40), the rate of

change is a function of time. If the rate of change were constant and equal to the one in (1.41), the
signal would reach the zero value to 7 = 7 . In fact, the value of the signal at ¢ = r is equal to

x(7)= Ce™!

== (1.42)

Since x(0)=C,

x(7)=0.368C

=0.368x(0) 143)

In conclusion, the exponential signal decays to approximately 36.8% of its initial value after a time
interval that is equal to the time constant.

Exercise

x(ty+7)

for any #; >0.
x(ty)

Determine

The below table illustrates the decay of an exponential signal at integer multiples of the time
constant. As can be seen in the table, the signal decays to less than 1% of its initial value in five
time constants. In practice, the exponential signal can be assumed to have vanished after five time
constants.

L1.3-Sinusoidal Signals
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t e*f/T
0 1.0

T 0.3679
27 0.1353
3r 0.0498
4t 0.0183
g 0.0067

1.3.B. CASE 2: COMPLEX C AND IMAGINARY g

x(t)=Ce®
C=Ace’ =4.Lp. (L44)

a:ja)o

where A-, @c, and @, are real and constant. The complex exponential signal x(z) can be

expressed as
x(t) = Acemcejwot
= dged(@0e) (145)

= A¢ cos(wot +¢c )+ jAcsin(wgt + )

The signal x(¢) is periodic. Its fundamental angular frequency is @,. The fundamental frequency

is fo=y/27 . The fundamental period is Ty =1/ f( =27/ w,, .

The real part of x(¢) is given by

xp(t)= Re{x(t)}

= A cos(wgt+ ) (1.40)

The signal x , (¢) is plotted in Figure L.7.

L1.3-Sinusoidal Signals
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A cos (wgt + ) A
A:/Acosd>
. ANVA
~T; 0 T, 2T, \ ¢
—_Al-

Figure 1.7: Real part of complex exponential signal

Harmonically Related Complex Exponentials
Harmonically related complex exponentials are a set of functions with frequencies re-
lated by integers, of the form

x(t) = A k= +1,+2, ... (2.28)
We will make extensive use of harmonically related complex exponentials later
when we study the Fourier series representation of periodic signals.
CASE 3
Both C and a Complex

For this case, the complex exponential x(t) = Ce” has the parameters

x(t) = Ce"; C = A a=o0(+ jo, (2.29)
where A, ¢, o, and w, are real and constant. The complex exponential signal can then be ex-
pressed as

X(f) — Aej¢e(0'«>+jw4»)’ — Ae0'1»’€j(wltf+¢)
= Aea"[COS(w()t 75 d)) + jAe””[ Sin(w()t + d)) (230)

= x,(1) + jxi(t).

In this expression, both x,(r) = Re[x(¢)] and x;(t) = Im[x(¢)] are real. The notation Re[ -]
denotes the real part of the expression, and Im[ - ] denotes the imaginary part. Plots of the

real part of (2.30) are given in Figure 2.16 for ¢» = 0. Figure 2.16(a) shows the case that
oy > 0. Figure 2.16(b) shows the case that oy < 0; this signal is called an underdamped sinu-
soid. For o = 0 as in Figure 2.15, the signal is called an undamped sinusoid.

1.3-Sinusoidal Signals
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Ae cos wt 0p>0 -~ Ae“"coswgt , oy <0

// \\

ol
Ae? _ -
- e
e -~

\ , [ -
R AVAW B

(a) (b)

Figure 2.16 Real part of a complex exponential.

In Figure 2.16(a), by definition, the envelope of the signal is +Ae”". Because both the
cosine function and the sine function have magnitudes that are less than or equal to unity, in
(2.30),

—Ae” = x,(t) = Ae”, —Ae’ = x(t) = Ae™. (2.31)

For the case that the sinusoid is damped (o, < 0), the envelope can be expressed as +Ae "'";
we say that this damped sinusoid has a time constant of 7 seconds.

SINGULARITY FUNCTIONS

In this section, we consider a class of functions called singularity functions. We de-
fine a singularity function as one that is related to the impulse function (to be de-
fined in this section) and associated functions. Two singularity functions are
emphasized in this section: the unit step function and the unit impulse function. We
begin with the unit step function.

Unit Step Function

The unit step function, denoted as u(t), is usually employed to switch other signals
on or off. The unit step function is defined as

1, >0
u(r)={0 - 2 (2.32)

where the independent variable is denoted as 7. In the study of signals, we choose
the independent variable to be a linear function of time. For example, if

7 = (¢t — 5), the unit step is expressed as

(—s5) = l, t—-5>0=¢t>5
u 1o, t-5<0=>r<5"
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This unit step function has a value of unity for + > 5 and a value of zero for t < 5.
The general unit step is written as u(t — t,), with

I, t>4
u(t — 1) = { ’

0, 1<ty

A plot of u(t — ty) is given in Figure 2.17 for a value of ¢, > 0.
The unit step function has the property
ut — 1) = [u(t — 10)]* = [u(t — 1)]*, (2.33)
with k any positive integer. This property is based on the relations (0)f = 0 and
(1) =1,k =1,2,.... A second property is related to time scaling;

u(at — ty) = u(t — ty/a),a # 0. (2.34)

(See Problem 2.21.)

Note that we have not defined the value of the unit step function at the
point that the step occurs. Unfortunately, no standard definition exists for this
value. As is sometimes done, we leave this value undefined; some authors define
the value as zero, and some define it as one-half, while others define the value as
unity.

u(t+T/2) > t0=-T/2
u(t-T/2) > t0="T/2

ll(f = [0) A

1_

Figure 2.17 Unit step function.

1.3-Sinusoidal Signals




Mohammad M. Banat - EE 260: Signal and System Analysis 26

I: Introduction

As previously stated, the unit step is often used to switch functions. An exam-
ple is given by
coswt, >0

coswtu(t)={0 F <0

The unit step allows us mathematically to switch this sinusoidal function on at ¢t = 0.
Another example is v(t) = 12u(t) volts; this function is equal to 0 volts for r < 0 and
to 12 volts for > 0. In this case, the unit step function is used to switch a 12-V source.

Another useful switching function is the unit rectangular pulse, rect(#/7),
which is defined as

1, —=ITR<t< T2
0, otherwise ’

rect(t/T) = {

This function is plotted in Figure 2.18(a). It can be expressed as three different func-
tions of unit step signals:

it + TRy —ult — Ti2)
rect(t/T) = S u(T/2 — t) — u(—=T/2 — t). (2.35)
u(t + TRw(TR2 — t)

These functions are plotted in Figure 2.18(b), (c¢), and (d).
rect((t-T/2)/T): from O to T.
rect((t+T/2)/T): from -T to 0.

rect (¢/T)A

1
T 0 T r
2 2

(a)
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(a)

rect (t/T) A
1 /u(r ¥+ B2)
T T g
2 2
—u(t — 1/2)
(b)
rect (¢/T) A
w( T2 — r)\ 1
& i r
2 2
7
—3(—¥2 —
(c)
rect (¢/T) A
"""" 1
1
I
I
1
1 5
F 0 F r
s 2 . .
(d) Figure 2.18 Unit rectangular pulse.
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The time-shifted rectangular pulse function is given by

I, ta—TR<t <+ T2

rect[(t — t))/T] = {O stfernise (2.36)

This function is plotted in Figure 2.19. Notice that in both (2.35) and (2.36) the rec-
tangular pulse has a duration of 7" seconds.

rect [(t — 1,)/T]

1_

0 P 0 t+ L ! Figure 2.19 Time-shifted rectangular
E 2 function.

The unit rectangular pulse is useful in extracting part of a signal. For example,
the signal x(¢) = cost has a period T, = 27/w = 2. Consider a signal composed of
one period of this cosine function beginning at t = 0, and zero for all other time.
This signal can be expressed as

x(t) = (cost)[u(t) — u(t — 2mw)] = {

cost, 0<t<2w
0, otherwise

The rectangular-pulse notation allows us to write

x(t) = cost rect[(t — m)/2m].

This sinusoidal pulse is plotted in Figure 2.20. Another example of writing the equa-
tion of a signal using unit step functions will now be given.

x(1)
\ | "
0 T 2 t
Figure 2.20 The function
-1 x(t) = cost rect[(t — 7)/2m].
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EXAMPLE 2.9 Equations for a half-wave rectified signal

Consider again the half-wave rectified signal described in Section 1.2 and Example 2.6, and
shown again as v(¢) in Figure 2.21. We assume that »(t) is zero for + < 0 in this example. If a
system containing this signal is to be analyzed or designed, the signal must be expressed as a
mathematical function. In Figure 2.21, the signal for 0 = ¢ = 7| can be written as
01(6) = (V. sin og)[u(t) — u(t = Ty/2)]
= V,,,Sin(w()t) l'ect[(f - T(;/4)/(T()/2)],

where T = 27@/w,. This signal, v((f), i1s equal to the half-wave rectified signal for
0 = ¢ = T,andiszero elsewhere. Thus, the half-wave rectified signal can be expressed as a
sum of shifted signals,

v(t) = vi(t) + vt = To) + vy(t — 2T) + -+

= Sot - k1)), (237)

since vy(t — T;) is vy(¢) delayed by one period, v,(t — 27j) is v,(t) delayed by two periods,
and so on. If the half-wave rectified signal is specified as periodic for all time, the lower limit
in (2.37) is changed to negative infinity. As indicated in this example, expressing a
periodic signal as a mathematical function often requires the summation of an infinity of
terms. |

v (1)

Vi [” A
Ty

27, t

Figure 2.21 Half-wave rectified signal.

Unit Impulse Function

Engineers have found great use for j = \V/—1, even though this is not a real number
and cannot appear in nature. Electrical engineering analysis and design utilizes j ex-
tensively. In the same manner, engineers have found great use for the unit impulse
function, 8(t), even though this function cannot appear in nature. In fact, the impulse
function is not a mathematical function in the usual sense [2]. The unit impulse
function is also called the Dirac delta function. The impulse function was introduced
by Nobel Prize winning physicist Paul Dirac.
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To introduce the impulse function, we begin with the integral of the unit step
function; this integral yields the unit ramp function

= /ll(T—l‘O)dT - /d'r =
0 t

where [t — to]u(t — ty), by definition, is the unit ramp function. In (2.38), the factor
u(t — ty) in the result is necessary, since the value of the integral is zero for ¢t < f,,.
The unit step function and the unit ramp function are illustrated in Figure 2.22.

t = [t = tolu(t — 1), (2.38)

Ly

u(t = to) 4

1_

Y

[t — tolu(t — tp)

|
|
|
|
0 to fh+ 1

Figure 2.22 Integral of the unit step
function.

Note that in Figure 2.22 and in (2.38), the unit step function is the derivative of
the unit ramp function. We have no mathematical problems in (2.38) or in the
derivative of (2.38). However, problems do occur if we attempt to take the second
derivative of (2.38). We now consider this derivative.

The result of differentiating the unit step function u(t — ;) is not a function in
the usual mathematical sense. The derivative is undefined at the only point, ¢ = ¢,
where it is not zero. (See Figure 2.22.) However, this derivative has been shown, by
the rigorous mathematical theory of distributions [2-6], to be very useful in the
modeling and analysis of systems. We now consider this derivative as the limit of a
derivative that does exist.
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No signal can change instantaneously in a physical system, since this change,
in general, represents an instantaneous transfer of energy. Hence, we can consider
the function f(¢) in Figure 2.23(a) to be a more accurate model of a physical step
function. We can differentiate this function and the resulting derivative is the rec-
tangular pulse g(¢) of Figure 2.23(b); that is,

_df(@)
§(t) ==
)
1 -
|
|
|
| ,
O t() f() + € t
(a)
8(0)
i
€
O f() [0 +e€ {
(b)
8(t — 1) 4
\ 1
0 I

Figure 2.23 Generation of an impulse
function.

(©)
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The practical function f(¢r) in Figure 2.23(a) approaches the unit step function
u(t — ty) if we allow e to approach zero. For this case, the width of g(¢) approaches
zero and the amplitude becomes unbounded. However, the area under g(¢) remains
constant at unity, since this area is independent of the pulse width e.

We often call the limit of g(¢) in Figure 2.23(b) as € approaches zero the unit
impulse function. Hence, with 8(t — t;) denoting the unit impulse function, we can
employ the concept that

li_r)r(l) g(t) = 6(t — ty) (2.39)

to convey a mental image of the unit impulse function. However, the impulse func-
tion is not a function in the ordinary sense, since it is zero at every point except £,
where it is unbounded. However, the area under a unit impulse function is well de-
fined and is equal to unity. On the basis of these properties, we define the unit im-
pulse function 6(¢ — t;) by the relations

ot —1ty) =0, t#ty;

/ 8(t — ty)dt = 1. (2.40)

We depict the impulse function as a vertical arrow as shown in Figure 2.23(c), where
the number written beside the arrow denotes the multiplying constant of the unit
impulse function. For example, for the function 56(¢ — f,), that number is 5. This
multiplying constant is called the weight of the impulse. The amplitude of the im-
pulse function at ¢ = £, is unbounded, while the multiplying factor (the weight) is
the area under the impulse function.

We say that the impulse function 8(r — f,) “occurs™ at t = t, because this con-
cept is useful. The quotation marks are used because the impulse function (1) is not an
ordinary function and (2) is defined rigorously only under the integral in (2.41). The
operation in (2.41) is often taken one step further; if f(¢) is continuous at t = ¢, then

f(08(r — 1) = f(t)8(t — to). (2.42)

The definition of the impulse function (2.40) is not mathematically rigorous
[3]; we now give the definition that is. For any function f(¢) that is continuous at
t = ty, 6(t — ty) is defined by the integral

[Dof(t)5(t — to)dt = f(to). (2.41)
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The product of a continuous-time function f(¢) and 6(t — t,) is an impulse with its
weight equal to f(¢) evaluated at time ¢, the time that the impulse occurs. Equations
(2.41) and (2.42) are sometimes called the sifting property of the impulse function.
This result can be reasoned by considering the impulse function, 6(t — f,)_to have a
value of zero, except at t = t(,. Therefore, the only value of f(z) that is significant in
the product f(1)6(t — t) is the value att = 1, f(t).

Table 2.3 lists the definition and several properties of the unit impulse func-
tion. See Refs. 2 through 6 for rigorous proofs of these properties. The properties

TABLE 2.3 Properties of the Unit Impulse Function

1. f()d(t — ty)dt = f(ty), f(¢) continuous at t = ¢,

f(t — ty)d(t)dt = f(—ty), f(t) continuous at t = —¢,

»

3. f(t)d(t — ty) = f(t,)d(t — ty), f(t) continuous at t = ¢,

d
4. 6([ - t()) = Ell([ - t())

ot
1, 2=
5. u(t — 1) = / S(r—ty)dr = { !

0, 1<t

» 00 1 " 00 B
6: S(Hf - t())dt = e ol t — — |dt
—00 |a| —00 a

7. 8(—t) = 8(1)

listed in Table 2.3 are very useful in the signal and system analysis to be covered
later.

EXAMPLE 2.10  Integral evaluations for impulse functions

This example illustrates the evaluation of some integrals containing impulse functions, using
Table 2.3, for f(¢) given in Figure 2.24(a). First, from Property 1 in Table 2.3 with 7, = 0,

| _swswa = g0 =2,

and the value of the integral is equal to the value of f(r) at the point at which the impulse
function occurs. Next, for Figure 2.24(b), from Property 2 in Table 2.3,

/v @ = Dé()dt = f(-1) = 3.
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As a third example, for Figure 2.24(c),
/ f()s(t — 1)dt = f(1) =1,

from Property 1 in Table 2.3. For Figure 2.24(d).

/' ft — 1)6(t — 1)dt = f(0) = 2,

10
4 -
fa—=1)
5(1) L
| |
t =1 0 1 2 3 t
(b)
[ ft—=1)
41 41
1
D 1 8(r—1)
N
L ]
-2 -1 0 1 2 t -1 0 1 2 3 t
(c) (d) Figure 2.24 Signals for Example 2.10.

from Property 1 in Table 2.3. We have considered all possible combinations of delaying the
functions. In each case, the value of the integral is that value of f{r) at which the impulse func-
tion occurs.

As a final example, consider the effects of time scaling the impulse function,

fO) _
4 2

| —

/ f()d(4t)dt = Z/ f@)d(t)dt =
from Property 6 in Table 2.3. O

2.5 MATHEMATICAL FUNCTIONS FOR SIGNALS
In Example 2.9, we wrote the equation of a half-wave rectified signal by using unit

step functions. This topic is considered further in this section. First, we consider an
example.
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EXAMPLE 2.11  Plotting signal waveforms
In this example, we consider a signal given in mathematical form:
f(t) = 3u(t) + tu(t) — [t — 1ut — 1) — Su(t — 2). (2.43)

The terms of f(¢) are plotted in Figure 2.25(a), and f{(¢) is plotted in Figure 2.25(b). We now
verity these plots. The four terms of f{¢) are evaluated as

3, >0
3u(t) = {0 :

t<0
t, t >0
Bty = {(J. <0’
(& — Ve — 1) = {f)_ L iz i:
5, > 2
5u(t—2)={0 ;<2.
41 3u(r)
\
21 tu(r)
| | | N
- —(t—=1Dut—1)
_4 —
I su(t—2)"
(a)
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f(0)

0 1 2 3 4 t(s)

(b)

Figure 2.25 Signal for Example 2.11.

Using these functions and (2.43), we can write the equations for f(z) (as the sum of four
terms) over each different range:
<0, f&)=0+0-0-0=0;
0<t<l1, f®)=3+t-0-0=3+1;
0<t<2, f@)=3+t—-@—-1)—-0=4;
2 <t, f&)=3+t—-(t—-1)—-5=-1.

The graph of f(r) given in Figure 2.25(b) is correct. [

EXAMPLE 2.12  Equations for straight-line-segments signal

The equation for the signal in Figure 2.27 will be written. The slope of the signal changes
from 0 to 3 for a change in slope of 3, beginning at + = —2. The slope changes from 3 to —3 at
t = —1, for a change in slope of —6. At¢ = 1, the slope becomes 0 for a change in slope of 3.
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x(1)

-3 Figure 2.27 Signal for Example 2.12.

The function steps from —3 to 0 at t = 3, for a change in amplitude of 3. Hence, the equation
for x(r) is given by

x(t) =3[t + 2Ju(t +2) —6[t + 1u(t + 1) + 3[t — 1u(t — 1) + 3u(t — 3).

fokok
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II1. CONTINUOUS TIME SYSTEMS

System
A system is a process for which cause-and-effect relations exist.

For our purposes, the cause is the system input signal, the effect is the system output
signal, and the relations are expressed as equations (the system model). We often
refer to the input signal and the output signal as simply the input and the output,
respectively.

x(1) Multiply | (0) = 10x(1)
by 10 ri -~
igure 2.31 Ideal amplifier.
x(r t
# System L» Figure 2.32 Representation of a general
system.

One representation of a general system is by a block diagram as shown in
Figure 2.32. The input signal is x(7), and the output signal is y(¢). The system may be
denoted by the equation

y(t) = T[x(0)], (2.51)

where the notation TJ - | indicates a transformation. This notation does not indicate
a function; that is, T[x()] is not a mathematical function into which we substitute
x(t) and directly calculate y(¢). The explicit set of equations relating the input x(¢)
and the output y(¢) is called the mathematical model, or simply, the model, of the
system. Given the input x(7), this set of equations must be solved to obtain y(z). For
continuous-time systems, the model is usually a set of differential equations.

EXAMPLE 2.15 Transformation notation for a circuit

Consider the circuit of Figure 2.33. We define the system input as the voltage source v(t)
and the system output as the inductor voltage v;(f). The transformation notation for the
system is

v (t) = Tlv(1)]. (2.52)
The equations that model the system are given by

di(r) .
L—— + Ri(t) = v(t)
dt
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i(1) R

o(f) D v ()| <L

Figure 2.33 RL circuit.

= Ldi(t) 253
o) = L—>. (2:53)

Hence, the transformation notation of (2.52) represents the explicit equations of (2.53). This
model, (2.53), is two equations, with the first a first-order linear differential equation with
constant coefficients. (L and R are constants.)

Interconnecting Systems

In this section, the system-transformation notation of (2.51) will be used to speci-
fy the interconnection of systems. First, we define three block-diagram elements.
The first element is a block as shown in Figure 2.34(a); this block is a graphical
representation of a system described by (2.51). The second element is a circle that
represents a summing junction as shown in Figure 2.34(b). The output signal of
the junction is defined to be the sum of the input signals. The third element is a
circle that represents a product junction, as shown in Figure 2.34(c). The output
signal of the junction is defined to be the product of the input signals.

We next define two basic connections for systems. The first is the parallel con-
nection and is illustrated in Figure 2.35(a). Let the output of System 1 be y;(¢) and
that of System 2 be y,(¢). The output signal of the total system is then given by

y(@) = yi(0) + y,(1) = Ti[x(1)] + T[x()] = T[x(0)]. (2.54)

The notation for the total system is y(¢) = T[x(t)].

x(1) y(1) = T[x(0)

Y

(a)
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x(1)

.Yz(f) ~ /_L y(f) = xl(t)‘+ .Yz(f) + X_z([)
x3(1) \T/

x(1) - /)‘(\ y(1) = x1(1) X x,(1)

x,(1) 7/

(©) Figure 2.34 Block-diagram elements.

(b)

The second basic connection for systems is illustrated in Figure 2.35(b). This
connection is called the series, or cascade, connection. In this figure, the output sig-
nal of the first system is y;(¢) = Ti[x(¢)], and the total-system output signal is

y(t) = Din()] = T(Ti[x(0)]) = T[x(1)]. (2.55)

The system equations of (2.54) and (2.55) cannot be simplified further until the
mathematical models for the two systems are known.

reeeee——_——————————————————— I
' [
[
! _| System y1(1) :
| - 1 '
x(1) : 0
I
[
: o System :
| 2 yz([) :
| [
S 4
(a)
T i
x(t) | System i) System LY
T 1 2 .
| :
e
(b) Figure 2.35 Basic connections of systems.
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EXAMPLE 2.16

Interconnections for a system

Consider the system of Figure 2.37. Each block represents a system, with a number given to
identify the system. The circle with the symbol X denotes the multiplication of the two input
signals. We can write the following equations for the system:

y3(0) = yi(0) + ya(0) = Ti[x(0)] + Dx(1)]

and
ya(t) = Ta[ys(0)] = Ta(Ti[x(1)] + T[x(0)]).
Thus,
y(t) = ya(t) X ys(t) = [T3(T1[x(1)] + To[x()D]Ta[x(0)]. (2.56)

This equation denotes only the interconnection of the systems. The mathematical model of
the total system depends on the mathematical models of the individual systems.

yi(0)

- 1 ~(+) 3
x(1) Npy Ll \r @ N0,

ys(1)

() y4(0)

Figure 2.37 System for Example 2.16.

The basic configuration of a feedback-control system is given in Figure 2.38.
The plant is the physical system to be controlled. The controller is a physical system
inserted by the design engineers to give the total system certain desired characteris-
tics. The sensor measures the signal to be controlled, and the input signal represents
the desired output. The error signal e(¢) is a measure of the difference between the
desired output, modeled as x(¢), and the measurement of the output y(¢). We write
the equations of this system as

x(1)

e(t) = x(t) — Tz[y(1)]

Controller Plant
+ e(t) m(r) y(0)_

- > 1 > 2
Sensor
y3(1) 3

A

Figure 2.38 Feedback-control system.
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and

y(t) = D[m(r)] = Ty(Ti[e(1)]). (2.57)
Hence, we can express the output signal as

y(1) = T[Ti(x(t) — T[y@)]]. (2.58)

The system output is expressed as a function of both the system input and the sys-
tem output, as is always the case for feedback systems. We cannot further simplify
relationship (2.58) without knowing the mathematical models of the three subsystems.
A simple example of the model of a feedback control system is now given.

EXAMPLE 2.17  Interconnections for a feedback system

In the feedback-control system of Figure 2.38, suppose that the controller and the sensor can
be modeled as simple gains (amplitude scaling). These models are adequate in some physical
control systems. Thus,

m(t) = Ti[e(r)] = Ke(t)

and

(1) = Ta[y(0)] = K3y(1),

where K| and Kj; are real constants. Now,

e(t) = x(1) — Ksy(1),
and thus,
m(t) = Kie(r) = Kyx(1) — KiK3y(1).

Suppose also that the plant is modeled as a first-order differentiator such that

dm(t)
y(0) = Tlm(o)] = ==
Hence,
d d
yit) = %[le(f) — KiK3y(1)] = K; % — KK3 ;Vi([t)-
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This equation is the system model and can be expressed as

dy(t) dx(t)

+ =K ——
dt (1) = Ky dt

K.K;

The system is modeled by a first-order linear differential equation with constant coefficients. ll

2.7 PROPERTIES OF CONTINUOUS-TIME SYSTEMS

In Section 2.6, continuous-time systems were introduced. In this section, we de-
fine some of the properties, or characteristics, of these systems. These definitions
allow us to test the mathematical representation of a system to determine its
properties.

When testing for the existence of a property, it is often much easier to estab-
lish that a system does not exhibit the property in question. To prove that a system
does not have a particular property, we need to show only one counterexample. To
prove that a system does have the property, we must present an analytical argument
that is valid for an arbitrary input.

In the following relation, x(¢) denotes the input signal and y(¢) denotes the
output signal of a system.

x(t) = y(2). (2.59)

We read this notation as “x(¢) produces y(¢)”; it has the same meaning as the block
diagram of Figure 2.32 and the transformation notation

[eq(2.51)] y(t) = T[x(1)].

The following are the six properties of continuous-time systems:

Memory
A system has memory if its output at time ¢, y(¢y), depends on input values other than
x(ty). Otherwise, the system is memoryless.

A system with memory is also called a dynamic system. An example of a system with
memory is an integrating amplifier, described by

y1) = K [ _x(m)dr. (2.60)

v(t) = %[mi(‘r}dt
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A memoryless system is also called a static system. An example of a memoryless
system is the ideal amplifier defined earlier. With x(z) as its input and y(7) as its out-
put, the model of an ideal amplifier with (constant) gain K is given by

y(t) = Kx(1)

for all . A second example is resistance, for which v(¢) = Ri(t). A third example is
a squaring circuit, such that

y(1) = x*(1). (2.61)

Clearly, a system y;(¢r) = 5Sx(t) would be memoryless, whereas a second system
w(t) = x(t + 5) has memory, because y,(f)) depends on the value of x(¢, + 5),
which is five units of time ahead of 1.

Invertibility
A system is said to be invertible if distinct inputs result in distinct outputs.

For an invertible system, the system input can be determined uniquely from its out-
put. As an example, consider the squaring circuit mentioned earlier, which is de-
scribed by

(1) = ()= x(1) = V(). (2.62)

Suppose that the output of this circuit is constant at 4 V. The input could be either
+2 V or —2 V. Hence, this system is not invertible. An example of an invertible sys-
tem is an ideal amplifier of gain K:

§(0) = Kx()= (1) = 3(0). (2.63)

Inverse of a System
The inverse of a system (denoted by 7) is a second system (denoted by 7;) that, when
cascaded with the system 7, yields the identity system.

The notation for an inverse transformation is then

y(t) = T[x()] = x(t) = Ti{y(1)]. (2.64)

Hence, 7j[ - ] denotes the inverse transformation. If a system is invertible, we can
find the unique x(¢) for each y(¢) in (2.64). We illustrate an invertible system in
Figure 2.39. In this figure,
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x(1) System YO || Tverse |20 = x(1)
system 1 Figure 2.39 Inverse system.
(1) = Dly()] = Tu(Ti[x(1)]) = x(1), (2.65)

where 75(+) = T; (), the inverse of system 77( *).
A simple example of the inverse of a system is an ideal amplifier with gain 5.
Note that we can obtain the inverse system by solving for x(¢) in terms of y(t):

y(t) = T[x(0)] = 5x(1) = x(1) = Ti[y(1)] = 02y(r). (2.66)
The inverse system is an ideal amplifier with gain 0.2.

Causality
A system is causal if the output at any time £, is dependent on the input only for

t = .

A causal system is also called a nonanticipatory system. All physical systems are
causal.

A filter is a physical device (system) for removing certain unwanted components from
a signal. We can design better filters for a signal if all past values and all future values
of the signal are available. In real time (as the signal occurs in the physical system), we
never know the future values of a signal. However, if we record a signal and then filter
it, the “future” values of the signal are available. Thus, we can design better filters if
the filters are to operate only on recorded signals; of course, the filtering is not per-
formed in real time.

A system described by
y(t) = x(t - 2), (2.67)

with 7 in seconds, is causal, since the present output is equal to the input of 2 s ago.
For example, we can realize this system by recording the signal x(#) on magnetic
tape. The playback head is then placed 2 s downstream on the tape from the record-
ing head. A system described by (2.67) is called an ideal time delay. The form of the
signal is not altered; the signal is simply delayed.

A system described by

y(0) = x(t + 2) (2.68)

is not causal, since, for example, the output at r = 0 is equal to the input atz = 2s.
This system is an ideal time advance, which is not physically realizable.
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Another example of a causal system is illustrated in Figure 2.41. In this system,
a time delay of 30 s is followed by a time advance of 25 s. Hence, the total system is
causal and can be realized physically. However, the time-advance part of the system
is not causal, but it can be realized if preceded by a time delay of at least 25 s. An ex-
ample of this type of system is the non-real-time filtering described earlier.

Stability

We now define stability. Many definitions exist for the stability of a system; we give
the bounded-input-bounded-output (BIBO) definition.

BIBO Stability
A system is stable if the output remains bounded for any bounded input.

By definition, a signal x(¢) is bounded if there exists a number M such that

|x(t)| = M for allt. (2.69)
Hence, a system is bounded-input bounded-output stable if, for a number R,

|y(1)] = Rforallt (2.70)

for all x(t) such that (2.69) is satisfied. Bounded x(7) and y(¢) are illustrated in
Figure 2.42. To determine BIBO stability for a given system, given any value M in
(2.69), a value R (in general, a function of M) must be found such that (2.70) is satisfied.

x(1)

(b) Figure 2.42 Bounded functions.
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A squaring circuit

(1) = x*(1) (2.71)
is stable because y(t) is bounded for any bounded input. In (2.69) and (2.70),
ly(H)] = R = M2

Stability is a basic property required of almost all physical systems. Generally,
a system that is not stable cannot be controlled and is of no value. An example of an
unstable system is a public address system that has broken into oscillation; the out-
put of this system is unrelated to its input. A second example of an unstable system
has been seen several times in television news segments: the first stage of a space
booster or a missile that went out of control (unstable) and had to be destroyed.

Time Invariance
A system is said to be time invariant if a time shift in the input signal results only in the
same time shift in the output signal.

For a time-invariant system for which the input x(¢) produces the output
y(t), y(t) = T[x(t)], x(t — ty) produces y(t — t,). That is,

y(t — to) = T[x(t — 19)] (2.73)

for all ¢, where T'[x(¢t — t,)] indicates the transformation that describes the system’s
input—output relationship. In other words, a time-invariant system does not change
with time; if it is used today, it will behave the same way as it would next week or
next year. A time-invariant system is also called a fixed system.

A test for time invariance is illustrated in Figure 2.44. The signal y(r — 1) is
obtained by delaying y(¢) by ¢, seconds. We define y,(¢) as the system output for the
delayed input x(¢r — ¢y), such that

ya(t) = T[x(t — 19)]

x(t (1) Del t—1
L» System 2 > er()ay u»

(a)

x(1) Delay x(t = tp)
ly g

System _»y(,(t)

(b) Figure 2.44 Test for time invariance.

1.3-Sinusoidal Signals




Mohammad M. Banat - EE 260: Signal and System Analysis 48

II: Continuous Time Systems

The system in Figure 2.44 is time invariant, provided that

y(t = 19) = y4(0). (2.74)

A system that is not time invariant is time varying.
As an example of time invariance, consider the system

(1) = e,

From (2.73) and (2.74),

va(t) = y(1) = "7 = y(r)

x(t—to), t—ty,
and the system is time invariant.

Consider next the system

y(t) = e "x(t).
In (2.73) and (2.74),

ya(t) = (1) = e"'x(1 — 1)

x(t—tg)

and

y(t) = e UThx(t — tp).

=t
The last two expressions are not equal; therefore, (2.74) is not satisfied, and the sys-
tem is time varying.

EXAMPLE 2.18  Test for time invariance

Figure 2.45(a) illustrates the test for time invariance (2.73) for a system that performs a time
reversal on the input signal. The input signal chosen for the test is a unit step function,
x(t) = u(t). In the top branch of Figure 2.45(a), we first reverse u(t) to obtain y(t) = u(—t)
and then delay it by 1 s to form y(r — 1) = u(—(t — 1)) = u(1 — t). In the bottom branch of
the diagram, we first delay the input by 1 s to form «(¢ — 1) and then reverse in time to form
va(t) = u(—t — 1). The signals for this system are shown in Figure 2.45(b). Because
va(t) # y(t — 1), the time-reversal operation is not time invariant. Intuitively, this makes
sense because a time shift to the right before a time reversal will result in a time shift to the
left after the time reversal. |
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y(t) =x(—1t) = u(—Q one-second 17— D =x(—(¢—-1))=u(l-9

> time-reversal
delay

x(t) = u(r)

x(t—=1)=u(t—-1)

ya@) =x(—t—-1)=u(-t—1)
>[time-reversal >

one-second

Y

delay
(a)
x(—=t) =u(—1 x(1—=0=u(l -1
1 I I _Il i 1 I I I [ 1 1 1 —Il 1 I I I I r
x(t—=1)=u(t—1) x(—1=0=u(-1-1
1 1 1 _Il l 1 1 1 1 I 1 1 1 _1 i 1 1 1 1 r
(b)

Figure 2.45 Time invariance test for Example 2.18.
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Linearity

The property of linearity is one of the most important properties that we consider.
Once again, we define the system input signal to be x(¢) and the output signal to be

y(0).
Linear System
A system is linear if it meets the following two criteria:

1. Additivity: If x;(¢) — y,(¢) and x,(t) = y»(¢), then

x1(1) + x2() = n(0) + yaAt). (2.75)
2. Homogeneity: If x;(t) = y;(t), then
ax(1) = ay(1), (2.76)

where a is a constant. The criteria must apply for all x,(¢) and x,(¢) and for all a.

These two criteria can be combined to yield the principle of superposition. A sys-
tem satisfies the principle of superposition if, with the inputs and outputs as just
defined,

arxi(t) + axxo(t) = ayy(t) + axy(t), (2.77)

where a; and a, are constants. A system is linear if and only if it satisfies the princi-
ple of superposition.

No physical system is linear under all operating conditions. However, a physi-
cal system can be tested by using (2.77) to determine ranges of operation for which
the system is approximately linear.

An example of a linear system is an ideal amplifier, described by y(1) = Kx(¢).
An example of a nonlinear system is the squaring circuit mentioned earlier:

(1) = X(1).

For inputs of x(¢) and x,(¢), the outputs are

xi(t) = xi(t) = n(1)
and

x(1) = x3(1) = y:(0). (2.78)
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However, the input [x;(¢) + x,(¢)] produces the output
x1(t) + xo(1) = [x1(1) + xo(OF = x3(0) + 2x1(t)x5(0)

+ x3(1) = ni() + ya) + 2x:(0)2(0), (2.79)

and [x(¢) + x»(¢)] does not produce [y;(¢) + y(¢)]. Hence, the squaring circuit is
nonlinear.

A linear time-invariant (LTI) system is a linear system that is also time invari-
ant. The LTI system, for both continuous-time and discrete-time systems, is the type

that is emphasized in this book.
An important class of continuous-time LTI systems consists of those that can

be modeled by linear differential equations with constant coefficients. An example
of this type of system is the RL circuit of Figure 2.33, modeled by

2.53 Ld“”
[eq(2.53)] -

+ Ri(t) = v(t).

EXAMPLE 2.19  Determining the properties of a particular system
The characteristics for the system
y(t) = sin (2t) x(t)

are now investigated. Note that this system can be considered to be an amplifier with a time-
varying gain that varies between —1 and l—that is, with the gain K(¢) = sin2¢ and
y(t) = K(t)x(t). The characteristics are as follows:

1. This system is memoryless, because the output is a function of the input at only the pre-

sent time.

2. The system is not invertible, because, for example, y(7) = 0, regardless of the value of
the input. Hence, the system has no inverse.
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3. The system is causal, because the output does not depend on the input at a future time.

4. The system is stable, the output is bounded for all bounded inputs, because the multipli-
er sin (2¢) has a maximum value of 1. If |x(¢)| = M,|y(r)| = M, also.

5. The system is time varying. From (2.73) and (2.74),

ya(t) = y(t) = sin2tx(t — to)

x(t—ty)

and

= sin2(t — ty)x(t — ty).
=

y(t)

6. The system is linear, since

ayx,(t) + arx,(t) — sin2t[a;x,(t) + a,x,(t)] = a;sin 2tx;(t) + a,sin 2tx,(t)
= ayy (1) + aya(0). 7

EXAMPLE 220  Testing for linearity by using superposition

As a final example, consider the system described by the equation y(t) = 3x(¢), a linear ampli-
fier. This system is easily shown to be linear by the use of superposition. However, the system
y(t) = [3x(¢r) + 1.5], an amplifier that adds a dc component, is nonlinear. By superposition,

y(t) = 3[ayxi(t) + arxo(1)] + 1.5 # ayy(t) + ay(1).

This system is not linear, because a part of the output signal is independent of the input
signal. -

II.1. Summary

Equation Title Equation Number Equation
Independent-variable transformation (2.6) y(t) = x(at + b)
Signal-amplitude transformation (2.8) y(t) = Ax(t) + B
Even part of a signal (2.13) x.(t) = % [x(2) + x(—1)]

Odd part of a signal (2.14) xo(t) = % [x(r) — x(—01)]
Definition of periodicity (2.15) x()=xt+T), T>0
Fundamental frequency in 1 2
hertz and radians/second (2.16) fo= T Hz, wy=27nf,= Trad/s

0 0
Exponential function (2.18) x(t) = Ce*
Euler’s relation (2.19) e/ = cosh + jsing

e’ + el
Cosine equation (2.21) cos f = s

el? — 10
Sine equation (2.22) sinf = T
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: ; sin 6
Complex exponential in polar form (223)and (2.24) ¢’ = 1£fandarge’ = lan_l[;?ﬁ} =0
Unit step functi 2.32) =g T™0
nit step function (2.7 u(r) = 0. r<0
Unit impulse function (2.40) ot —ty) =0, t#t;
/ 8(t — to)dt =1
Sifting property of unit impulse function (2.41) / f(0)d(t — ty)dt = f(ty)
Multiplication property of unit .
impulse function (242) f()d(t — ty) = f(to)d(t — ty)
Test for time invariance (2.73) y(t) = y(1)
=1, x(t—t)
Test for linearity 2.77) axi(t) + arx (t) = ayy(t) + ar)yH(t)

I1.2. Continuous Linear Time Invariant Systems

Consider a system described by

x(t) = (1) (3.1)

This system is time invariant if a time shift of the input results in the same time shift
of the output—that is, if

x(t — to) = y(t — t), (3.2)

where ¢ is an arbitrary constant.

For the system of (3.1), let

x1(6) = (@), x(t) = (o). (3.3)
This system is linear, provided that the principle of superposition applies:
a1xi(1) + axp(t) = aryi (1) + axy(1). (3.4)

This property applies for all constants a; and a, and for all signals x(¢) and x,(¢).
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IMPULSE REPRESENTATION OF CONTINUOUS-TIME
SIGNALS

In this section, a relationship is developed that expresses a general signal x(7) as a
function of an impulse function. This relationship is useful in deriving general prop-
erties of continuous-time linear time-invariant (LTT) systems.

Recall that two definitions of the impulse function are given in Section 2.4.
The first definition is, from (2.40),

/ 5([ - f()) dt =1, (35)
and the second one is, from (2.41),
/ rx(t)a(t — 1y) dt = x(1p). (3.6)

The second definition requires that x(¢) be continuous at ¢ = t,. According to (3.6),
if x(¢) is continuous at ¢t = ¢, the sifting property of impulse functions can be stated
as from (2.42),

x(0)d(t — ty) = x(tp)d(t — to). (3.7)

We now derive the desired relationship. From (3.7), with ¢, = 7,
x()é(t — 1) = x(7)6(t — 7).

From (3.5), we use the preceding result to express x(¢) as an integral involving an
impulse function:

o0

[OO x(7)é(t — 7)dt = [ch(t)ﬁ(t — 7)dr
- x(t)/ 8(t — 7)dr = x(¢).

We rewrite this equation as

(e ¢]

(1) = /_ (1) = 7)dr. (3.8)

This equation is the desired result, in which a general signal x(¢) is expressed as a
function of an impulse function. We use this expression for x(¢) in the next section.
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CONVOLUTION FOR CONTINUOUS-TIME LTI SYSTEMS

An equation relating the output of a continuous-time LTI system to its input is
developed in this section. We begin the development by considering the system
shown in Figure 3.1, for which

x(t) = (1)

A unit impulse function 8(¢) is applied to the system input. Recall the description
(3.5) of this input signal; the input signal is zero at all values of time other than
t = 0, at which time the signal is unbounded.

x(t) = 8(1) LTI v(t) = h(t)
System
x(t) =8(t—A) LTI y(t) = h(t — A)
System |

x(t) = AS(t — kA) LTI v(t) = Ah(t — kA)
—_— —_— i
System Figure 3.1 Impulse response of

an LTI system.

With the input an impulse function, we denote the LTI system response in
Figure 3.1 as A(t); that is,

8(t) — h(t). (3.9)

Because the system is time invariant, the response to a time-shifted impulse func-
tion, 8(¢ — 1), is given by

8(t — tg) = h(t — 1p).
The notation A( - ) will always denote the unit impulse response.

According to the principle of superposition, an LTI system’s total response to
a sum of inputs is the sum of the responses to each individual input. It follows that if
the input is a sum of weighted, time-shifted impulses

x(t) = §A6(t — kA), (3.10)
k=0
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then the output signal is a sum of weighted, time-shifted impulse responses
y(t) = D Ah(t — kA). (3.11)
k=0

EXAMPLE 3.1 Sum of impulse responses
Consider the system with the impulse response A(t) = e ‘u(t), as shown in Figure 3.2(a). This
system’s response to an input of x(¢) = &(t — 1) would be y(¢) = h(t — 1) = eyt - 1),

as shown in Figure 3.2(b). If the input signal is a sum of weighted, time-shifted impulses as
described by (3.10), separated in time by A = 0.1 (s) so that

00
x(1) = >0.18(t — 0.1k),
k=0

as shown in Figure 3.2(¢), then, according to (3.11), the output is
o0 o0
y(t) = D01kt — 0.1k) = 0.1 > e Ry — 0.1k).
k=0 k=0
This output signal is plotted in Figure 3.2(d).

h(t)

0 | | | |
0 2 4 6 8 10 1

(a)

0.8 [~
0.6 —
04—

—
8]
8]
S
N
(o)}
~
[0.2]
=]

10 ¢

0.1

0
0O 01 02 03 04 05 06 07 08 09 1 ¢
(c)
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p v(1)
1.5 |-
1 -
0.5
0 I I I | I I | I I |
0 05 1 15 2 25 3 35 4 45 5 Figure 3.2 Impulse responses for
(d) the system of Example 3.1.
So we can now write
o0
y(t) = /x(T)h(t — r)dr, (3:13)
—00

The result in (3.13) is called the convolution integral. We denote this integral
with an asterisk, as in the following notation:

o

(1) = /_ X(Dh(t = 7y dr = x(1)*h(0) (3.14)

Next we derive an important property of the convolution integral by making a
change of variables in (3.13); let s = (t — 7). Then 7 = (¢t — s) and d7 = —ds.
Equation (3.13) becomes

y(t) = /_Oox(r)h(t —71)dr = L x(t — s)h(s)[—ds]

o ¢}

= / x(t — s)h(s) ds.

Next we replace s with 7 in the last integral, and thus the convolution can also be
expressed as

y(t) = / _x(D)h(t = ) dr = / (e = k() dr. (3.15)

The convolution integral is symmetrical with respect to the input signal x(¢) and the
impulse response A(t), and we have the property

y(t) = x(t)*h(t) = h(t)*x(7). (3.16)
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We derive an additional property of the convolution integral by considering the
convolution integral for a unit impulse input; that is, for x(t) = 6(¢),

y(t) = 8(t)*h(z).

This property is independent of the functional form of /(t). Hence, the convolution
of any function g(¢) with the unit impulse function yields that function g(¢). Because
of the time-invariance property, the general form of (3.17) is given by

y(t = to) = 8(t — 1o)*h(r) = h(t — 1).

This general property may be stated in terms of a function g(¢) as

and

S(t)*g(r) = 8(1)
(3.18)
o(t — t0)*g(r) = g(t — 10)*8(r) = g(t — o).

The second relationship is based on (3.16).

EXAMPLE 3.2

Impulse response of an integrator

Consider the system of Figure 3.3. The system is an integrator, in which the output is the in-
tegral of the input:

= / . x(7)dr. (3.20)

This equation is the mathematical model of the system. We use the integral symbol in a block
to denote the integrator. The system is practical and can be realized as an electronic circuit
with an operational amplifier, a resistor, and a capacitor, as described in Section 1.2. Inte-
grating amplifiers of this type are used extensively in analog signal processing and in closed-
loop control systems.

We see that the impulse response of this system is the integral of the unit impulse func-
tion, which is the unit step function:

h(t) = / ’6(7)(1'7 =u(t) = {(1) :j(?
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o0

() = j x(D)h(t —7)dr

—00

x(t) =tu(t)
x(7) =7tu(r)
h(t) =u(t)

h(t—7)=u(t—7)

We will now use the convolution integral to find the system response for the unit ramp input,
x(t) = tu(t). From (3.14),

o0

y(t) = x(t)*h(t) = tu(t)*u(t) = /xTu(T)u(l‘ — 7)dr.

In this integral, ¢ is considered to be constant. The unit step u(7) is zero for 7 < 0; hence, the
lower limit on the integral can be increased to zero with u(7) removed from the integrand:

y(t) = / Tu(t — 7)dr.
0

In addition, the unit step u(t — 7) is defined as

u(t—‘r)={0’ T >t

b, o<¢

The upper limit on the integral can then be reduced to ¢, and thus,
ot 72
y(t) = / Tdr = —

0 2o

Integrator

x(1) f y(0)

>
>

r
W) = J_xx(T) B Figure 3.3 System for Example 3.2.

This result is easily verified from the system equation, (3.20):

y(t) = / x(t)dr = / Tu(t)dr = /TdT = %u(t).
—00 —00 0
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EXAMPLE 3.3 Convolution for the system of Example 3.1

Consider the system of Example 3.1 for the case that the time increment between impulses
approaches zero. If we let A = 0.1, the input signal in Example 3.1 can be written as

00

x(t) = i 0.18(c — 0.1k) = > u(kA)s(t — kA) (A),
k=0

k=—0c

because u(kA) = 0for k < 0and u(kA) = 1for k = 1. From (3.12), as A — 0, the input sig-
nal becomes

x(t) = /'ll(T)(S([ — 7)dt = u(t).

From (3.18), the output signal is calculated from

y(t) = /x(r)h(t — 7)dT = /u(*r)e"“"”u(t — 7)dr.
x(t) =u(?)

h(t) =e "u(r)

Because u(7) = 0 for 7 < 0, and u(t — 7) = 0 for 7 > ¢, this convolution integral can be

rewritten as
t !

y(t) = /e“"”dr = e"/e’dr = (1 — e u(r).
‘0 ‘0
The output signal is plotted in Figure 3.4. Compare this result with the summation result
shown in Figure 3.2(d).

y()

05

0 | | | | | Figure 3.4 System output signal for
0 2 4 6 8 10 ¢+ Example 3.3. O
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EXAMPLE 3.4

Graphical evaluation for the response of an integrator

This example is a continuation of Example 3.2. The output for that system (an integrator)
will be found graphically. The graphical solution will indicate some of the important proper-
ties of convolution. Recall from Example 3.2 that the impulse response of the system is the
unit step function; that is, A(¢) = u(t). To find the system output, we evaluate the convolu-
tion integral

n OO

y(t) = / x(D)h(t = 7)dr.

Note that the integration is with respect to 7; hence, ¢ is considered to be constant. Note also
that the impulse response is time reversed to yield h(—7), and then time shifted to yield
h(t — 7). These signal manipulations are illustrated in Figure 3.5.

x(7)
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s
h(r)
1
|
0 1
| |
t t—1 T=t—35
(a)
h(—7)
1
|
=] 0 T
(b)
h(t —7)4
1
|
0 t—1 T
(c)
Xx(7)
0
(a)
x(7) h(t — 7)
1
0 t
(d)

Figure 3.5 Impulse response
factor for convolution.

Figure 3.6 Convolution for Example 3.4.
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The r-axis is plotted in Figure 3.5(a) and is the same as the axis of h(t — 7) in Fig-
ure 3.5(c).

Shown in Figure 3.6(a) is the first term of the convolution integral, x(7) = 7u(7).
Figure 3.6(b) shows the second term of the integral, h(t — 7), fort < 0. The product of these
two functions is zero; hence, the value of the integral [and of y(¢)] is zero for ¢t < 0. Fig-
ure 3.6(c) shows the second term of the convolution integral for ¢+ > 0, and Figure 3.6(d)
shows the product of the functions, x(7)h(t — 7), of Figure 3.6(a) and (c¢). Therefore, from
the convolution integral, y(¢) is the area under the function in Figure 3.6(d). Because the
product function is triangular, the area is equal to one-half the base times the height:

n

y) = %(t)(l) = % t>0.

Example 1

I, 0<¢<T, I, 0<7<T,
x(1) = . =>x(r)= .
0, otherwise 0, otherwise

I, 0<¢t<T, , 05t—-71<T=>—1<—71<-1+T=>t-T<t<t
h(t) = = h(-1)= .
0, otherwise 0, otherwise

I'=T,=T
y(t)= T x(t)h(t—7)dr

T
= J.h(t—r)dr
0

For t<0, y(#)=0
For t>2T, y(t)=0

For 0<¢<T, integrate from 0 to ¢ to get
t
y(t) = J-dr =t
0
For T <t < 2T, integrate from ¢ to T to get

T
y(t) = J. dr =2T -t
T

Sketch y(z).
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EXAMPLE 3.5 A system with a rectangular impulse response

As a third example, let the impulse response for an LTI system be rectangular, as shown in
Figure 3.7. We will later use this system in the study of certain types of sampling of continuous-
time signals. Furthermore, this system is used in the modeling of digital-to-analog converters.
Note that one realization of this system consists of an integrator, an ideal time delay, and a
summing junction, as shown in Figure 3.8. The reader can show that the impulse response of
the system is the rectangular pulse of Figure 3.7.

The input to this system is specified as

x(1) = 8(t + 3) + 3e " u(r)
x1(1) + x(1)

and is also plotted in Figure 3.7. We have expressed the input as the sum of two functions; by
the linearity property, the response is the sum of the responses to each input function. Hence,

xi(t) = yi(2)

Xz(f)—’Y3(t)}’ x() = yi(t) + y(0).

h(t) A

Figure 3.7 Input signal and
impulse response for Example 3.5.

Integrator

0,7

Y +

I )
=

V/:

Ideal time
delay of 2

Y

Figure 3.8 System for Example 3.5.
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The system response to the impulse function is obtained from (3.18):
(@) = h(®)*6(t +3) = h(t + 3) = u(t + 3) —u(t + 1).

To determine the response to x,(t), we plot A(t — 7), as shown in Figure 3.9(a). This plot is
obtained by time reversal and time shifting. Three different integrations must be performed
to evaluate the convolution integral:

1. The first integration applies for ¢ = 0, as shown in Figure 3.9(a), and is given by

o .0

+ / (1) (0)dr =0, ¢=0.
JO

h(t —7) 3 556

h(t—1)
1 ? 1+ t=0

(a)

2. The second integration applies for 0 = ¢ = 2 and is illustrated in Figure 3.9(b):

00 0

(1) = / kxz(‘r)h(t —71)dt = (O)h(t — 7)dr

t " 00
+ /36_0'57617' + / x(7)(0) dr
0 Jt

t

=6(1 —e), 0=1¢
0

367().57
T 205

lIA
)

X5(7) h(t —7)

(98]

O0=t=2
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lIA

3. Figure 3.9(c) applies for2 = ¢ 00 :

i 3p-057|1
ya(t) / 3¢ 057 dr = 2% = 6(e 051D — o051
t—2

_05 t—2

= fe gl — 1) = 1031, 2= ¢ < &,

The output y(z) is plotted in Figure 3.10.

0 t—2 t T 0
(c)
y() 3.793
N v, (1)
3 \w(’)

R i i’ i

4 6 t  Figure 3.10 Output signal for Example 3.5.
|

EXAMPLE 3.6 A system with a time-delayed exponential impulse response
Consider a system with an impulse response of A(f) = e ‘u(t — 1) and an input signal
x(t) = e¢'u(—=1 — t). The system’s impulse response and the input signal are shown in Fig-

ure 3.11(a) and (b), respectively. The system’s output is y(t) = x(¢) h(t), from (3.16).

h(r)
0.4

02

(a)
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x(1)
0.4

y()
0.08 —

0.06 [~
0.04 |~

0.02 |~

! iy
e e
y(t) = /efe_“_”dr = /e"eZTdT = —oco<t = 0.

—00 —0

Because x(7) is zero for 7 > —1, for t > 0, the output signal is given by
-1 -1

g . =2t
)’(l) — /eTe—(t—T)dT = e—t/eZ‘rdT = € 26 L > 10,

—0 —0
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3.3 PROPERTIES OF CONVOLUTION
The convolution integral of (3.14) has three important properties:

1. Commutative property. As stated in (3.15), the convolution integral is
symmetrical with respect to x(¢) and A(t):

x(0)*h(t) = h(t)*x(t). (3.22)

x(1) (1) h(t)
> Ry >

y(1)
h(t) >

Y

x(1)

Figure 3.12 Commutative property.

2. Associative property. The result of the convolution of three or more func-
tions is independent of the order in which the convolution is performed. For example,

[x(0)*h (O)]*ho(1) = x()*[Iy(1)*ha(0)] = x(0)*[ha()*h1 (1)]. (3.23)

X([)—> hy(1) > 115(1) —V([)> = dL» hy (1) > /(1) _y(r)»
(a)
x(1) y(1) x(1) y(1)

Y

hy(t) e > =——| hy(1) * (1) p——

—| 1,(0)

(b)

Figure 3.13 Associative property.

It follows that for m cascaded systems, the impulse response of the total system is
given by

h(t) = hy(6)*hy(t)* - - #hy (1) (3.25)

3. Distributive property. The convolution integral satisfies the following
relationship:

x(0)*hy () + x(0)*ho(r) = x(0) [y (1) + hy(1)]. (3.26)
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hy(1)
x(1) (1) x(1) (1)
—_— = — hy(t) + hy(t) —>
112([)
Figure 3.14 Distributive property.
EXAMPLE 3.7 Impulse response for an interconnection of systems

We wish to determine the impulse response of the system of Figure 3.15(a) in terms of the im-

pulse responses of the four subsystems. First, from (3.29), the impulse response of the paral-

lel systems 1 and 2 is given by

h(1) = hy(1) + ho(1),
as shown in Figure 3.15(b). From (3.24), the effect of the cascaded connection of system a and
system 3 is given by
hi(t) = ha(t)*h3(t) = [hi(t) + ha(0)]*hs(1),
as shown in Figure 3.15(c). We add the effect of the parallel system 4 to give the total-system
impulse response, as shown in Figure 3.15(d):
h(t) = hy(t) + ha(t) = [Ai(1) + ho(0)]*hs(1) + hy(2). u
hy(t)
x(1) (1)
e ’73([)
hy(1)
> /l4(f)
(a)
> 1(1) + hy(1) > /15(1)

x(r) (1)
]

hy(1)

(b)
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x(1)

[A1(1) + ho()] = hy(1)

x(1)

/14(’)

(¢)

y(1)

[A1(2) + hy(0)] # h3(t) + hy(l) pr——

(d)

Figure 3.15 System for Example 3.7.

3.4 PROPERTIES OF CONTINUOUS-TIME LTI SYSTEMS

Memoryless Systems

Recall that a memoryless (static) system is one whose current value of output
depends only on the current value of input; that is, the current value of the output
does not depend on either past values or future values of the input. Let the present

time be ¢;. From (3.30),

y(t) = / XA~ 7 dr

o0

(3.31)

Hence, an LTI system is memoryless if and only if h(t) = K&(t),—that is, if
y(t) = Kx(t). A memoryless LTI system can be considered to be an ideal amplifier,
with y(¢) = Kx(¢). If the gain is unity (K = 1), the identity system results.

Invertibility

A continuous-time LTI system with the impulse response /(t) is invertible if its
input can be determined from its output. An invertible LTI system is depicted in
Figure 3.16. For this system,

x(t)*h(t)*h,(t) = x(1), (3.32)
Inverse
System system
x(t) y(1) = x(1)
— /(1) > h(1) p——
Figure 3.16 LTI invertible system.
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x(1)*8(t) = x(¢). (3.33)
From (3.32) and (3.33),
h(t)*hi(t) = 8(t). (3.34)

Thus, an LTI system with the impulse response A(¢) is invertible only if the function
h;(t) can be found that satisfies (3.34). Then, the inverse system has the impulse
response /;(t).

Causality

A continuous-time LTI system is causal if the current value of the output depends
on only the current and past values of the input. Because the unit impulse function
8(t) occurs at t = 0, the impulse response A(t) of a causal system must be zero for
t < 0. In addition, a signal that is zero for t < 0 is called a causal signal. The convo-
lution integral for a causal LTI system can then be expressed as

o0

(1) = [ (= k() d = A x(t — m)h(7) dr. (3.35)

If the impulse response is expressed as h(t — 7), this function is zero for
(t — 1) <0, or for 7 > t. The second form of the convolution integral can then be
expressed as

y(t) = [Oox(T)h(t —7)dr = [ch(T)h(t — 7)dr. (3.36)

Notice that (3.36) makes it clear that for a causal system, the output, y(¢), depends
on values of the input only up to the present time, 7, and not on future inputs.

In summary, for a causal continuous-time LTI system, the convolution inte-
gral can be expressed in the two forms

y(t) = A x(t — )h(r)dr = [Oox(T)h(t — g)dr. (3.37)
Stability

Recall that a system is bounded-input-bounded-output (BIBO) stable if the output
remains bounded for any bounded input. The boundedness of the input can be
expressed as

|x(t)] < M for all ¢,
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where M is a real constant. Then, from (3.15), we can write
(0.9}

ly(H)| = ‘/_Oox(t — o)h(r)dr| = /_OO lx(t — 7)h(7)| dr
= [ |x(t — T)||h(7')| dr (3.38)

= [:Mlh(7)| dr = M[:m(m i,

since
o0

/_ x1(1)x,(t) dt é[ |x1(8)x,()] dt.

Thus, because M is finite, y(¢) is bounded if

/ \h(t)| dt < 0. (3.39)

Stability for an LTI system derived

EXAMPLE 3.8
We will determine the stability of the causal LTI system that has the impulse response
given by
h(t) = e u(r).
In (3.40),
o 00 o 00 —3t | o0 1
|h(t)| dt = / e dt = =— < 0,
./—\ JO _3 0 3
EXAMPLE 3.9 Stability for an integrator examined

As a second example, consider an LTI system such that A(¢) = u(¢). From Example 3.2, this
system is an integrator, with the output equal to the integral of the input:

y(t) = / x(7)dr.

We determine the stability of this system from (3.40), since the system is causal:

n OO n OO
/ |h(t)| dt = / dt =t
JO JO

This function is unbounded, and thus the system is not BIBO stable.

o0

0
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Unit Step Response

As has been stated several times, the impulse response of a system, /4(t), completely
specifies the input—output characteristics of that system; the convolution integral,

(00]

[eq(3.30)] y() = [OO x(7)h(t — 7)drT,

allows the calculation of the output signal y(¢) for any input signal x(¢).
Suppose that the system input is the unit step function, u(z). From (3.30), with
s(t) denoting the unit step response, we obtain

s(t) = Zmu(*r)h(t —7)dr = [ h(t — 7)dr, (3.41)

because u(r) is zero for = < 0. If the system is causal, h(t — 7) is zero for
(t — 1) <0,orforr >t and

s(r) = A h(r)dr. (3.42)

We see, then, that the unit step response can be calculated directly from the unit im-
pulse response, with the use of either (3.41) or (3.42).

If (3.41) or (3.42) is differentiated (see Leibnitz’s rule, Appendix B), we
obtain

h(r) = . (3.43)

Thus, the unit impulse response can be calculated directly from the unit step
response, and we see that the unit step response also completely describes the
input—output characteristics of an LTI system.

EXAMPLE 3.10  Step response from the impulse response

Consider again the system of Example 3.8, which has the impulse response given by
h(t) = e u(r).

Note that this system is causal. From (3.42), the unit step response is then
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! L =3t
s(t) = / h(r)dr = / edr =©
0 0 —3

We can verify this result by differentiating s(¢) to obtain the impulse response. From (3.43),

; = %(1 — e Nu(r).

we get
h(t) = dfi(;) = %(1 — e75(t) + %(—63’)(—3)140)
= )
Why does (1 — e )8(t) = 0? [See (2.42).] o

3.5 DIFFERENTIAL-EQUATION MODELS

Some properties of LTI continuous-time systems were developed in earlier sections
of this chapter, with little reference to the actual equations that are used to model these
systems. We now consider the most common model for LTI systems. Continuous-time
LTI systems are usually modeled by ordinary linear differential equations with constant
coefficients. We emphasize that we are considering the models of physical systems,
not the physical systems themselves.

In Section 2.3, we considered the system model given by

d
% = ay(1), (3.4)

where a is constant. The system input x(¢) usually enters this model in the form
t
——— — ay(t) = bx(t), (3.45)

where a and b are constants and y(¢) is the system output signal. The order of the
system is the order of the differential equation that models the system. Hence,
(3.45) is a first-order system.

Equation (3.45) is an ordinary linear differential equation with constant coef-
ficients. The equation is ordinary, since no partial derivatives are involved. The
equation is linear, since the equation contains the dependent variable and its deriv-
ative to the first degree only. One of the coefficients in the equation is equal to
unity, one is —a, and one is b; hence, the equation has constant coefficients.

We now test the linearity of (3.45), using superposition. Let y,(¢) denote the
solution of (3.45) for the excitation x;(¢), for i = 1, 2. By this, we mean that

dy(t)
dt

— ay(t) = bx(t), i=1,2. (3.46)

II.2-Continuous Linear Time Invariant Systems




Mohammad M. Banat - EE 260: Signal and System Analysis 75

II: Continuous Time Systems

We now show that the solution [a,y;(f) + a,y,(t)] satisfies (3.45) for the excitation
[a1x1(t) + a»x,(t)], by direct substitution into (3.45):

%[am(f) + ayy(0)] — alayy(t) + ay(1)] = blayx,(t) + ax(1)].

This equation is rearranged to yield

d d
al[ 20— ) - bxm} + az|: 20— i) - bxzm] = 0.

(3.47)

Because, from (3.46), each term is equal to zero, the differential equation satisfies
the principle of superposition and hence is linear.

Next, we test the model for time invariance. In (3.45), replacing ¢ with (r — ¢)
results in the equation

dy(t — 1)

o ay(t — ty) = bx(t — ty). (3.48)

Delaying the input by ¢, delays the solution by the same amount; this system is then
time invariant.

A simple example of an ordinary linear differential equation with constant
coefficients is the first-order differential equation

dZ—(t[) +2y(1) = x(0). (3.49)

This equation could model the circuit of Figure 3.17, namely,

L0 pice) =
% i(t) = v(t),
with L = 1H, R = 2Q, y(t) = i(¢), and x(t) = v(t).

i(r)

v (1) <t> L

Figure 3.17 RL circuit.
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The general form of an nth-order linear differential equation with constant
coefficients is

d"y(t) d"'y(1) y( )
ay dr" + a,1 dfn_l + e k@ dt + (l()y(f)
d"x(t) d™ x(1) dx(t)
=b——+b, ————+ - +b——+
where ay, ..., a, and by, ..., b,, are constants and a,, # 0. We limit these constants

to having real values. This equation can be expressed in the more compact form
n dky(t m  dkx(t
por y( ) - 3, ( ) _—

Solution of Differential Equations

The method of solution of (3.50) presented here is called the method of undeter-
mined coefficients [2] and requires that the general solution y(¢) be expressed as the
sum of two functions:

y() = yt) + y,(2). (3.51)

In this equation, y.(¢) is called the complementary function and y,(t) is a particular
solution. For the case that the differential equation models a system, the comple-
mentary function is usually called the natural response, and the particular solution,
the forced response. We will use this notation. We only outline the method of solu-
tion; this method is presented in greater detail in Appendix E for readers requiring
more review. The solution procedure is given as three steps:

EXAMPLE 3.11 System response for a first-order LTI system

As an example, we consider the differential equation given earlier in the section, but with
x(t) constant; that is,

dy(r)

i + 2y(t) =2

for t = 0, with y(0) = 4. In Step 1, we assume the natural response y.(f) = Ce". Then we
substitute y.(¢) into the homogeneous equation:

dy(1)
dt

+2y(t) =0=(s + 2)Ce" = 0=s5 = —2.
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The natural response is then y,(¢) = Ce ', where Cis yet to be determined.
Because the forcing function is constant, and since the derivative of a constant is zero,
the forced response in Step 2 is assumed to be

yp(l) =P,

where P is an unknown constant. Substitution of the forced response y,(t) into the differen-
tial equation yields

£+2P=0+2P=2,
dt

or y,(t) = P = 1. From (3.51), the general solution is

¥(0) = ye(6) + yp(t) = Ce™ + 1.

We now evaluate the coefficient C. The initial condition is given as y(0) = 4. The
general solution y(¢) evaluated at ¢t = 0 yields

y(O) = 3e0) + () = [Ce* + 1]

=C+1=4=C=3.
The total solution is then
y(t) =1+ 3e7 2.
General Case

Consider the natural response for the nth-order system

L k m k
(eq(3.50)] $a, XD _ 3y, 0

k=0 dt* =R

The homogeneous equation is formed from (3.50) with the right side set to zero.
That s,

d"y(1) "'y (r) dy(r)
an = S LR e apy(r) = 0, (3.52)
with a, # 0. The natural response y.(¢) must satisfy this equation.

We assume that the solution of the homogeneous equation is of the form
y.(t) = Ce". Note that, in (3.52),
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) =cCe%
dy(t)
e = Cse™;
d*y(t
yz( ) _ Cs%e™;
dt
dnyC(t) t
= Cs"e", 308
Za— = Cs" (3.53)

Substitution of these terms into (3.57) yields
(a,s" + a,_1s" '+ - + a5 + ag)Ce® = 0. (3.54)

If we assume that our solution y,(f) = Ce* is nontrivial (C # 0), then, from
(3.54),

a,s" + a,_s" '+ - +a;s +a,=0. {3.55)

This equation is called the characteristic equation, or the auxiliary equation, for the
differential equation (3.50). The polynomial may be factored as

a,s" + a,_s" '+ -+ ais + a
=a,(s — s)(s — ) (s — s, = 0. (3.56)

Hence, n values of s, denoted as s;,1 =i = n, satisfy the equation; that is,
y.i(t) = Cie*" for the n values of s; in (3.56) satisfies the homogeneous equation
(3.52). Since the differential equation is linear, the sum of these n solutions is also a
solution. For the case of no repeated roots, the solution of the homogeneous equa-
tion (3.52) may be expressed as

V() = Cie®' + Coe™ + -+ + Cpe’. (3.57)

See Appendix E for the case that the characteristic equation has repeated roots.
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3.7 SYSTEM RESPONSE FOR COMPLEX-EXPONENTIAL INPUTS

First in this section, we consider further the linearity property for systems. Then
the response of continuous-time LTI systems to a certain class of input signals is
derived.

Linearity

Consider the continuous-time LTI system depicted in Figure 3.20. This system is
denoted by

x(t) = y(1). (3.60)

For an LTI system, (3.60) can be expressed as the convolution integral

n OO0

y(t) = / Vx(t — 7)h(7)drT. (3.61)

; y(1)
— h(t)

Figure 3.20 LTI system.

The response of an LTI system to the complex-exponential input
x(t) = Xe* (3.65)

is now investigated. For the general case, both X and s are complex. We investigate
the important case that the system of (3.61) and Figure 3.20 is stable and is modeled
by an nth-order linear differential equation with constant coefficients. The expo-
nential input of (3.65) is assumed to exist for all time; hence, the steady-state system
response will be found. In other words, we will find the forced response for a differ-
ential equation with constant coefficients for a complex-exponential input signal.

The differential-equation model for an nth-order LTI system is

noodfy(r) o dRx(r)

eq(3.50 — = b
[ q( )] k=0ak d[k kz() k d[k

2

where all a; and b; are real constants and a,, # 0. For the complex-exponential exci-
tation of (3.65), recall from Section 3.5 that the forced response (steady-state
response) of (3.50) is of the same mathematical form; hence,

yss(t) = Ye*, (3.66)
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where y(7) is the steady-state response and Y is a complex constant to be deter-
mined [s is known from (3.65)]. We denote the forced response as y,(¢) rather than
yp(1), for clarity. From (3.65) and (3.66), the terms of (3.50) become

a,ys(t) = agYe" box(t) = byXe"
dyg(t dx(t
a ydt() = a;sYe" b, d(t) = bisXe*
A’y (t d’x(t
a, th( b as°Y e bz%(z) = b5’ Xe"
d" (1 d"™x(t
ay i}ltn( ) = ansnyeSt bm (1.:”(1 ) = bmSmXBSt (367)

These terms are substituted into (3.50), resulting in the equation
(a,s" + a,_s" '+ - + a5 + ay)Ye"
= (bypS™ + bp_1s™ 1+ -+ + bys + by)Xe. (3.68)

The only unknown in the steady-state response y,(¢) of (3.66) is Y. In (3.68), the
factor e” cancels, and Y is given by

Y = |:bmsm + bm—lsm_1 + -+ bis + by

X = H(s)X. 3.69
aps" + a,_s"N+ -+ oags + ag :| ) (3.69)

It is standard practice to denote the ratio of polynomials as

bms'" =+ bm,lsm_l 4= wes o bls =+ b()

H(S) - n n—1
a,s + a,—1S + + as + [

(3.70)

We show subsequently that this function is related to the impulse response A(¢). The
function H(s) is called a transfer function and is said to be nth order. The order of a

transfer function is the same as that of the differential equation upon which the
transfer function is based.

We now summarize this development. Consider an LTI system with the
transfer function H(s), as given in (3.69) and (3.70). If the system excitation is the

complex exponential Xe*, the steady-state response is given by, from (3.66) and
(3.69),

x(t) = Xe*' — y(t) = XH(s))e . (3.7}
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The complex-exponential solution in (3.71) also applies for the special case of sinu-
soidal inputs. Suppose that, in (3.71), X = |X|e/® and s; = jw,, where ¢ and w, are
real. Then

x(f) = Xe*t = | X|e%eit = | X|el@*9)
= | X|cos (wit + ¢) + jlX|sin(wit + ¢). (3.72)
Since, in general, H(jw,) is also complex, we let H(jw;) = |H(jw;)|e’". The right
side of (3.71) can be expressed as
Yos(t) = X H(jwp)e" = | X|[H(joy)|e/ o700
= | X||H(joy)[cos [wt + ¢ + ZH(joy)] + jsinfwiz + ¢ + LH(jw)]],

with 0y = £ZH(jw,). From (3.64), since the real part of the input signal produces
the real part of the output signal,

| X |cos (it + ¢) = | X||H(jow)|cos [oit + ¢ + ZH(jw))]. (3.73)

This result is general for an LTI system and is fundamental to the analysis of LTI
systems with periodic inputs; its importance cannot be overemphasized.

EXAMPLE 3.16 Transfer function of a servomotor

In this example, we illustrate the transfer function by using a physical device. The device is a
servomotor, which is a dc motor used in position control systems. An example of a physical
position-control system is the system that controls the position of the read/write heads on a
computer hard disk. In addition, the audio compact-disk (CD) player has three position-
control systems. (See Section 1.3.)

The input signal to a servomotor is the armature voltage e(f), and the output signal is
the motor-shaft angle 6(¢). The commonly used transfer function of a servomotor is second
order and is given by [3]

H(s) = — 5
() s©+ as
Servomotor
e(r) | 0(1)
> 2 L
Armature 5% as Shaft
voltage angle  Figure 3.22 System for Example 3.16. M
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where K and a are motor parameters and are determined by the design of the motor. This
motor can be represented by the block diagram of Figure 3.22, and the motor differential
equation is
da’o(t)y  dor)
+ a
dr’ dt

= Ke(t).

EXAMPLE 3.17  Sinusoidal response of an LTI system

In this example, we calculate the system response of an LTI system with a sinusoidal excita-
tion. Consider a system described by the second-order differential equation

d’y(t)  _dy(t)

+3—+2 = 10x(¢).
= — () = 10x(0)

Hence, from (3.70), the transfer function is given by

10

H(s) = ——.
() s2+3s+2

Suppose that the system is excited by the sinusoidal signal x(¢) = 5 cos (2t + 40°). In (3.73),

10 50£40°
H(s X=——- 540°) = ——
()s:jZ S2+3S+2s:j2( ) —4 + j6 + 2
50£40° 50 £40°

— = = 7.905¢ 784",
—2+j6  6325.,108.4°

Thus, from (3.73), the system response is given by
Vss(t) = 7.905 cos (2t — 68.4°).
Note the calculation required:

H(j2) = — 5 10‘ = 1.581£—-108.4°.
2y + 3(j2) + 2

From (3.73), the steady-state response can be written directly from this numerical value for
the transfer function:

Vss(t) = (1.581)(5)cos (2t + 40° — 108.4°)
= 7.905 cos (2t — 68.4°). |

II.2-Continuous Linear Time Invariant Systems




Mohammad M. Banat - EE 260: Signal and System Analysis 83

II: Continuous Time Systems

Consider now the case in which the input function is a sum of complex
exponentials:

N
x(1) = X Xye. (3.74)
k=1

By superposition, from (3.71), the response of an LTI system with the transfer func-
tion H(s) is given by

N
YSs(t) = I;XkH(Sk)eSkt- (375)

EXAMPLE 3.18  Transfer function used to calculate LTI system response

Suppose that the input to the stable LTI system in Figure 3.21, with the transfer function
H(s), is given by

x(f) = 8 — 5¢ + 3cos (4t + 30°).

In terms of a complex-exponential input Xe*, the first term in the sum is constant (s = 0),
the second term is a real exponential (s = —6), and the third term is the real part of a com-
plex exponential with s = j4, from (3.72). From (3.75), the steady-state response is given by

Yss(t) = 8H(0) — SH(—6)e ™ + 3Re[H (j4)e/“ "],

The sinusoidal-response term can also be simplified somewhat from (3.73), with the resulting
output given by

yss(t) = 8H(0) — SH(—6)e ® + 3|H(j4)| cos [4t + 30° + £ H(j4)].
Impulse Response

Recall that when the impulse response of an LTI system was introduced, the nota-
tion A(+) was reserved for the impulse response. In (3.71), the notation H(+) is
used to describe the transfer function of an LTI system. It will now be shown that
the transfer function H(s) is directly related to the impulse response A(t), and H (s)
can be calculated directly from A(t).

For the excitation x(¢) = ¢*, the convolution integral (3.15) yields the system
response:

y(t) = /_Ooh(T)X(l‘ —71)dr = [Ooh(T)eS(f—T) dir

— ot / h(r)e™" dr. (3.76)
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In (3.71), the value of s; is not constrained and can be considered to be the variable s.
From (3.71) and (3.76),

0.9)

W) = es’/ h(t)e*"dr = H(s)e",

and we see that the impulse response and the transfer function of a continuous-time
LTI system are related by

o0

H(s) = [ ~h()e ™ dr. (3.77)

This equation is the desired result. Table 3.1 summarizes the results developed in
this section.
We can express these developments in system notation:

e’ — H(s)e™. (3.78)

We see that a complex exponential input signal produces a complex exponential
output signal.

skokesk
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I11.

FOURIER SERIES

To introduce the Fourier series, we consider the sum
X(I) = 10 + 3cos wol + SCOS(Z(U()T + 300) + 4 sin 3(1)()[. (49)
This signal is easily shown to be periodic with period 7j, = 27/w,. We now manipu-

late this signal into a different mathematical form, using Euler’s relation from
Appendix D:

3 . ;
x([) =10 + 5[elwut + e_lwnf]

2 [ef20+30°) 4 =iuy+307] 4 k. [ — gi3o]
2 2 . 2

or
x(t) = (2e/™2)e 3 + (2.5e7™0)eI2 + 1 5¢7 T
+ 10 + 1.5¢/ + (2.5¢/™0)el20! + (2e7I™2)el3! (4.10)
This equation can be expressed in the compact form

X([) = C,‘geij}w”t R C¥2e*]'2wuf 3 Cile*]'wnf + C() o4 Clejw“f o4 CzeijUt + C3ej3w(,r

3
= 2 Cké’jkw“t.
k=-3

The coefficients C; for this series of complex exponential functions are listed in
Table 4.1. Note that C, = C,, where the asterisk indicates the complex conjugate.

We see then that a sum of sinusoidal functions can be converted to a sum of
complex exponential functions. Note that even though some of the terms are com-
plex, the sum is real. As shown next, (4.10) is one form of the Fourier series.

TABLE 4.1 Coefficients for Example 4.2

K & Cy
0 10 —

1 1.5 1.5

2 2.5230° 2.5/-30°
3 2£-90° 2290°
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Given a real periodic signal x(¢), a harmonic series for this signal is defined as
x(®) = D, Ce*;, C, = CL. (4.11)
k=—00

The frequency o, is called the fundamental frequency or the first harmonic, and
the frequency kw is called the kth harmonic. If the coefficients C; and the signal
x(t) in (4.11) are related by an equation to be developed later, this harmonic se-
ries is a Fourier series. For this case, the summation (4.11) is called the complex
exponential form, or simply the exponential form, of the Fourier series; the coef-
ficients Cy are called the Fourier coefficients. Equation (4.10) is an example of a
Fourier series in the exponential form. We next derive a second form of the
Fourier series.

The general coefficient Cy in (4.11) is complex, as indicated in Table 4.1, with
C_, equal to the conjugate of Cy. The coefficient C; can be expressed as

Cy = |Ck|€j0k,

with —00 < k < 00. Since C_; = Cy, it follows that 6_, = —6,. For a given value of
k, the sum of the two terms of the same frequency kw in (4.11) yields

C_ke‘fkwtyl 4 Ckejkw1>’ = |Ck|€_j0k€_jkw“t A [Ck|€j0k€jkw”t
= | Cpl[e T kent 00 4 gilkant 00
= 2|Cylcos(kayt + 6;). (4.12)

Hence, given the Fourier coefficients Cy, we can easily find the combined trigono-
metric form of the Fourier series:

x(r) = Co + D2|Cilcos(kwyt + 6y). (4.13)
=1
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A third form of the Fourier series can be derived from (4.13). From Appendix A,
we have the trigonometric identity

cos(a + b) = cosa cosb — sinasin b. (4.14)

The use of this identity with (4.13) yields
x(r) = Cy + D2|Cilcos(kwyt + 6;)
=1
= Cy + D [2|Cklcos b, cos kwyt — 2|Cy| sin 6 sin kawyt]. (4.15)
=1

From Euler’s relationship, we define the coefficients A, and Bj implicitly via the
formula
2C;, = 2|C,| e
= 2|Ck|COSGk ~+ ]2|Ck| sin Ok = Ak - jBk’ (416)

where A, and By are real. Substituting (4.16) into (4.15) yields the trigonometric
form of the Fourier series

x(t) = Ay + D [Ay cos kwyt + By sin ko], (4.17)
k=1

with A, = C,. The original work of Joseph Fourier (1768-1830) involved the series
in this form.

The three forms of the Fourier series [(4.11), (4.13), (4.17)] are listed in Table 4.2.
Also given is the equation for calculating the coefficients; this equation is developed
later. From (4.16), the coefficients of the three forms are related by

2C, = Ay — jBi; Cr = |Cile!®; Gy = A, (4.18)

Recall that A, and By are real and, in general, Cy is complex.

[eq(4.11)] x() = i Crel*o
k=—00
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TABLE 4.2 Forms of the Fourier Series

Name Equation
Exponential > Gkt G = |Cler, C = C;,
k=—00
o0
Combined trigonometric Cy + EZICklcos(kw(,t + 0;)
k=1
oQ
Trigonometric Ay + D (Agcos kayt + By sin ket
k=1
2C = Ag — jB, Gy = Ay
-, 1 i
Coefficients Cr = = [ x(t)e kgt
Ty J1,
1 —jkawgt
Cy = = [ x(t)e """ dt. (4.23)
Ty Jr,

We now consider the coefficient C,. From (4.23),

1
= — t) dt.
Co T TUX()

Hence, Cy is the average value of the signal x(¢). This average value is also called the
dc value, a term that originated in circuit analysis. For some waveforms, the dc value
can be found by inspection.

EXAMPLE 4.2 Fourier series of a square wave

Consider the square wave of Figure 4.4. This signal is common in physical systems. For ex-
ample, this signal appears in many electronic oscillators as an intermediate step in the gener-
ation of a sinusoid.

We now calculate the Fourier coefficients of the square wave. Because

0 = V, 0<t<Ty2
B=1-v, To<t<T’

—T,2 0 T,/2 Ty 3Ty/2 t

-V — Figure 4.4 Square wave with amplitude V.
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1 .
C, = — | x(t)e 7% gy
“=T0 ) (1)

T”/Z V T()
= ekt gt — — [ gikent gy

T(). 0 0JTy?2
Ty }
To/2 .
iV

— L e_jkwnf
To(—jkwy)
Ck — (e*jkﬂ _ eij _ e*ijW -+ efjkw)

2wk

Ty/2
— e_jkwﬂt

0

2jV
W o kodd
_ ka ki (4.24)
B ik} k even’ '

with Cy = 0. The value of Cj is seen by inspection, since the square wave has an average
value of zero. Also, C, can be calculated from (4.24) by L’Hopital’s rule, Appendix B.
The exponential form of the Fourier series of the square wave is then

o0

2V i

— —jm/2 ,jkwyt 4

x(t) k;_xkrre (i (4.25)
kodd

The combined trigonometric form is given by

X 4V
x(r) = >, ——cos(kwgt — 90°) (4.26)
=k
kodd
Frequency Spectra
2|Cyl
ﬂ
w
4v
3m 4v
S
| |
0 ) 2w 3w 4w Sw, ®
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Ok
o 2wy 3w 4w Sw
0° | | | | |
() w
—90° |- Figure 4.5 Frequency spectrum for a
square wave.
|C]
2v
aw
2V
| 3w 2v
S
| | ]
—Sw 3w —w 0 o 3w, Swy ®
Ok
90° |~
on) 3wq 5w
| | |
—Sw 3w —w 0 ®
—90° |-

Figure 4.6 Frequency spectrum for a square wave.

EXAMPLE 4.5 Fourier series for an impulse train

The Fourier series for the impulse train shown in Figure 4.10 will be calculated. From (4.23),

I :
Cr = = | x(t)e* dy
T,
T2
1 ¢ " 1 _. 1
=— [ @) dr = —e k| =,
Ty )12 Ty =0 T
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x(1)

—2T, =Ty 0 Ty 2Ty t Figure 4.10 Impulse train.

C

Figure 4.11 Frequency spectrum for an
—2w —ay 0 oN 2w ® impulse train.

o0

1.
x(t) = D ek, (4.27)
k==To

A line spectrum for this function is given in Figure 4.11. Because the Fourier coefficients are

real, no phase plot is given. From (4.13), the combined trigonometric form for the train of im-
pulse functions is given by

00

2
x(t) = —+ — COS kwt.
® Ty kngO 0 O

EXAMPLE 4.6 Frequency spectrum of a rectangular pulse train

For this example, the frequency spectrum of the rectangular pulse train of Figure 4.12 will be
plotted. This waveform is common in engineering. The clock signal in a digital computer is a
rectangular pulse train of this form. Also, in communications, one method of modulation is to
vary the amplitudes of the rectangular pulses in a pulse train according to the information to
be transmitted. This method of modulation, called pulse-amplitude modulation, is described
in Sections 1.3 and 6.6.

From Table 4.3, the Fourier series for this signal is given by

il Tkoy
20y = S Z=sine o Leiken, (4.28)
k=—00 T() 2
. sin x
sinc x = (4.29)
X
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TABLE 4.3 Fourier Series for Common Signals
Name Waveform C, C,.k#0 Comments
L. x(1)
X
Square 0 0 . 2X, G =0,
wave - Ty 0 Ty ¢ wk k even
— X
2 ()
g Xy . Xo
Sawtooth = 55
_T() 0l To ZT() 4
3
x(t)
Triangular X)) Xo _ZXL) C, =0,
wave 2 (mk)? k even
-7, ol T,
4 x(1)
Xy B
Full-wave ﬁ %X()
rectified @ w(4k- — 1)
—2Ty—-Tp0l Ty 2Ty3Ty4T,
5. Ck: 0,
x()r() k odd, except
Half-wave v ﬁ :Xn e {l'
rectified 4 (k= — 1) 1= 71
X
-, ol 1, oy, and C_; = ;3
6 x(1) 4
X,
Rectangular ! |_ TXy |TXo . Tkoo Tkwo _ =Tk
wave | | | T T 2 2 Ty
—Tp ZT0T T, 2T,
2 2
7.
x(1)
Impulse Xo X0 1 Xo 12X Xo Xy
train T T
-, 0 T, 2T,
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x(1)

eeoe eo e

[sinc x|

—4ar 37 =2 - 0 T 2 37 4

EXAMPLE 4.7 LTI system response for a square-wave input

Suppose that for the LTI system of Figure 4.16, the impulse response and the transfer func-
tion are given by

1

h(t) = e'u(t) = H(s) = T

'—> h(r) -

Figure 4.16 LTI system.

x(1)

- 0 T 2w 37 t Figure 4.18 Input signal for Example 4.7.
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i . e
x(t) = Cor + D, Crpe* =2+ > —eT™%IN,
k=—00 k=—ocomk
k#0 k odd
H (jkay) ! ! Ztan Y(—k)
JK®)|w=1 = = —K).
| L+jk 1+ K
For k odd, from (4.39),
Cp, = H(jkag)Chy = ;{i]z— /2 — tan”\(k)
E R
and
Coy = H(jO)Co, = (1)(2) = 2.
TABLE 4.6 Fourier Coefficients for Example 4.7
k H(jkwy) Cix Cyy | Crxl |Cyyl
0 i 2 2 2 2
1 L4—450 ié -90° L4—1?5° 1.273 0.900
\/E ) L aV?2 ‘ . -
1 4 4
3 ——/£-T71.6° ——/=0()° Z£—161.6° 0.424 0.134
V10 3m 37V10
1 4 4
5 —/—78.7° —Z£-90° £ —168.7° 0.255 0.050
V26 S 57\V26

skskosk
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IV. FOURIER TRANSFORM

Sufficient conditions for the existence of the Fourier transform are similar to
those given earlier for the Fourier series. They are the Dirichlet conditions:

1. On any finite interval,
a. f(¢) is bounded;
b. f(¢) has a finite number of maxima and minima; and
¢. f(¢) has a finite number of discontinuities.

2. f(r) is absolutely integrable; that is,

o0

/ 1#)] d < .
F{f()} = F(w) = [x.f(f)e_jwr dr. (5.1)

ft) = % [ . F(w)e® do = F'Y{F (o)}, (5.2)

Together, these equations are called a transform pair, and their relationship is often
represented in mathematical notation as
f(t) <> F(w).

The continuous frequency spectrum shown in Figure 5.3 is a graphical repre-
sentation of the Fourier transform of a single rectangular pulse of amplitude V' and
duration 7 (which can also be considered to be a periodic pulse of infinite period).
The analytical expression for the Fourier transform is found by (5.1). The rectangu-
lar pulse can be described mathematically as the sum of two step functions:

£(6) = Vu(t + T2) — Vu(t — TR).

To simplify the integration in (5.1), we can recognize that f(¢) has a value of V dur-
ing the period —7/2 < t < + T/2 and is zero for all other times. Then,

+T12 . oot [+T12
F(w) = / Vel dt = v
— =172

T2 —jw
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F(w) = TV sinc (Tw/2) A

f(t) = Vrect (¢/T) | TV

N\ N\

NI

0 T t /_4_77\/_2_770 2_77\/4_776_7;‘
Z T T T r T

Figure 5.3 A rectangular pulse and its Fourier transform.

ool _ Tl TV [ eiTeR — ,-iTor
= V —
—jw wT/2 j2

- sin(Tw/2)
Twl2

} = TV sinc(Tw/2),

and we have derived our first Fourier transform:
F{V{u(t + T2) — u(t — T/2)]} = TV sinc(Tw/2).
rect(t/T) = [u(t + T/2) — u(t — T2)].
Therefore, in our table of transform pairs we will list
rect(t/T) <> T sinc(Tw/2) (5.4)

Any useful signal f(¢) that meets the condition

o0

E:/|me<m (5.5)

is absolutely integrable. In (5.5), E is the energy associated with the signal, which

can be seen if we consider the signal f(¢) to be the voltage across a 1-{) resistor. The
power delivered by f(¢) is then

p() = [fOPIR = |f(n)P,

and the integral of power over time is energy.
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A signal that meets the condition of containing finite energy is known as an
energy signal. Energy signals generally include nonperiodic signals that have a finite
time duration (such as the rectangular function, which is considered in several ex-
amples) and signals that approach zero asymptotically so that f(¢) approaches zero
as t approaches infinity.

A signal that meets the condition

1 T2
P = lim — |f(6)|>dt < o0 (5.6)
T—eo T J

is called a power signal.

An example of a mathematical function that does not have a Fourier trans-
form, because it does not meet the Dirichlet condition of absolute integrability, is
f(t) = e'. However, the frequently encountered signal f(r) = e ‘u(t) does meet
the Dirichlet conditions and does have a Fourier transform.

The impulse function, in fact, provides a building block for several of the more
important transform pairs. Consider the waveform

f(t) = Ad(t — 1),

which represents an impulse function of weight A that is nonzero only at time
t = ty, as illustrated in Figure 5.4(a). (See Section 2.4.) The Fourier transform of
this waveform is

o0

F(w) = F{A8(t — ty)} = /oO AS(t — to)e @ dt.

Recall the sifting property of the impulse function described in (2.41), namely, that

/ f@0)8(t — 19) dt = f(19),

—00

for f(¢) continuous at t = t,. Using this property of the impulse function to evaluate
the Fourier transform integral, we find that

F{AS(t — ty)} = Ae /o0, (5.7)

5(1) <X> 1. (5.8)
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While we are dealing with the impulse function, let’s consider the case of an
impulse function in the frequency domain. We have

F(w) = (0 — wy),

The inverse Fourier transform of this impulse function is found from Equation (5.2):

f0)=9;%F0®}==@l{ﬂw—wwﬂ==£;/;ﬁ«u—w@dwmm

After applying the sifting property of the impulse function, we have

F0) = 57 (30 — o)) = e,

which is recognized to be a complex phasor of constant magnitude that rotates in
phase at a frequency of w, rad/s.

The Fourier transform pair

et T 2md(w — w) (5.9)
ol
| F(0)
2w
0 t
fe) = elod
/f(1) _ wg )
“:;;;;7[ “““ B (b)
e
= a t
______ S = ) P
-

Figure 5.5 Time-domain plots and frequency spectra of ¢/,

5.2 PROPERTIES OF THE FOURIER TRANSFORM

fi(t) <> Fi(w) and f(t) <> Fy(w),
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Linearity

[af1(6) + bfAD)] <> [aFy(@) + bFy(w)], (5.10)

EXAMPLE 5.2 The linearity property of the Fourier transform

We can make use of the property of linearity to find the Fourier transforms of some types of
waveforms. For example, consider

f(t) = Bcos wyt.
B . . B . B _.
= —[e/®! 4 pTiwl] = — plwol 4 — —]w‘.tl
f(@) 2 [e e ] 5 e 5 e

Beos wyt <> wB[8(w — wy) + 8(w + wp)], (5.11)
Time Scaling

The time-scaling property provides that if
f(6) <> F(w).

then, for a constant scaling factor a,

flat) <%> |71|F<2>. (5.12)

a

EXAMPLE 5.3 The time-scaling property of the Fourier transform

We now find the Fourier transform of the rectangular waveform

g(t) = rect(2t/T).

F() |
f(@) T,
1 /
. N\ /N,
‘T, 0Ty t 7 _4nm [ 2 2 hir N
2 2 T, T T T

(a)
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From the result of Example 5.1,

[eq(5.4)]

where

Vrect(t/T) <> TV sinc(T wl2),

g() = f(21),

f(t) = rect(t/T).

Therefore, from (5.12),

g(1) 4

Glw) = + F(w/2) = ZLsine[ 211
(w)—2 (w)—251nc 1/
G (w)
1 Ty
2

Dl BN

_nho L t /4Tw 4N @
1

3 T

(b)

Figure 5.6 Rectangular pulses and their frequency spectra.

EXAMPLE 5.4

Time Shifting

The property of time shifting previously appeared in the Fourier transform of the
impulse function (5.7) derived in Section 5.1, although it was not recognized at that
time. This property is stated mathematically as

f(t = to) <> F(w)e ™, (5.13)

where the symbol ¢, represents the amount of shift in time.

The time-shifting property of the Fourier transform

We now find the Fourier transform of the impulse function, which occurs at time zero.
From (5.8),

n 00

F{8(t)} = / (e dt = e =1.

J =00 =0
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If the impulse function is shifted in time so that it occurs at time ¢, instead of at t = 0, we see
from the time-shifting property (5.13) that

F{8(t — tg)} = (Ve = ¢7loh,

which is recognized as the same result obtained in (5.7). |

EXAMPLE 5.5 Fourier transform of a time-delayed sinusoidal signal

Consider the time-shifted cosine wave of frequency @ = 2007 and a delay of 1.25 ms in its
propagation:

x(t) = 10 cos [2007(t — 1.25 X 1073)].

This signal can be viewed as a phase-shifted cosine wave where the amount of phase shift is
7r/4 radians:

x(t) = 10 cos (2007t — m/4).

Using the linearity and time-shifting property, we find the Fourier transform of this delayed
cosine wave:

F{x(1)} = X(0) = 10F{cos (200art) } /0012
= 10’/7[8(0) = 200,”.) e 8((1) e 20071’)]6_]"0(”25‘”
= 107[8(w — 200m)e ™ + §(w + 200m)e/™].

The rotating phasor, e 7' _is reduced to the two fixed phasors shown in the final equation,
because the frequency spectrum has zero magnitude except at w = 2007 and o = —2007.
Recall, from Table 2.3, that

F(w)8(w — wy) = F(w)d(w — ).

Time Transformation

flat) <% iF(2>.

la| \ a

Application of the time-shift property (5.13) to this time-scaled function gives
us the time-transformation property:

flat — t;) <& ﬁF ) (5.14)

Duality

The duality property, which is sometimes known as the symmetry property, is stated as

F(t) <% 2mf(-w) when f(1) <>> F(w). (5.15)
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V rect(t/T) <2> TV sinc(wT/2).

TV sinc(Tt2) <> 2zV rect(—w/T).

Because the waveform is an even function of frequency—in other words, F(—w) = F(w)—we
can rewrite the equation that describes the waveform as

27 f(—w) = 2w A rect(w/23),

where we have substituted 7 = 28 and V' = A. The duality property can be used with these
values substituted into (5.4) to determine that

F(t) = 2B A sinc(pt).
The transform pair

AB . 7
7smc (Bt) «<— Arect(w/2P)

is shown in Figures 5.8(b) and (a), respectively. O
f(0)
F(o) 28
A
-8 0 B o //_Zw\/_lo l\/g-\\’
(a) B B ) B B

Figure 5.8 A rectangular pulse in the frequency domain.

Convolution

The convolution property states that if
[10) <> Fi(0) and f, <> F(w),

then convolution of the time-domain waveforms has the effect of multiplying their
frequency-domain counterparts. Thus,
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F1)*f2(0) <5 Fi(0)Fy(w), (5.16)

where

1010 = [ 1@t = nar = [ 56 = oo
§0) = 5(0)* (1) 3> X (@) 11(@) = V()

FUOFAE) <> S Fy () Fr(w) (5.17)

where

» 00 o0

Fi(w)*Fy)(w) = / Fi(M)Fy(w — A)dA = / Fi(w — AN)F5(A)dA.

—00 =

EXAMPLE 5.8 The time-convolution property of the Fourier transform

Chapter 3 discusses the response of linear time-invariant systems to input signals. A block
diagram of a linear system is shown in Figure 5.9(a). If the output of the system in re-
sponse to an impulse function at the input is described as A(f), then A(z) is called the
impulse response of the system. The output of the system in response to any input signal
can then be determined by convolution of the impulse response, A(¢), and the input signal,
x(1):

00

y(t) = x(t)*h(t) = / Vx(T)h(t — 7)dr.

Using the convolution property of the Fourier transform, we can find the frequency spectrum
of the output signal from

Y(w) = X(w)H(w),
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x (1) y(t) = x(t) * h(t)
—_— i(t) p—

(a)
X(w) Y(w) = X(w)H (w)

— H(w) f——

(b) Figure 5.9 A linear time-invariant system.

where
h(t) <%> H(w), x(t) <>> X(w). and y(1) <> Y(w).
Frequency Shifting

The frequency shifting property is stated mathematically as
x()et <T> X(w — wy). (5.18)

This property was demonstrated in the derivation of Equation (5.9), without our
having recognized it.

EXAMPLE 5.9  The frequency-shift property of the Fourier transform

In the generation of communication signals, often two signals such as
g1(t) = 2cos(2007t) and g»(r) = 5cos(10007t)

are multiplied together to give
g3(t) = gi(t)g-(t) = 10 cos(2007¢t)cos(10007t).

We can use the frequency-shifting property to find the frequency spectrum of g;(r). We
rewrite the product waveform g;(7) by using Euler’s identity on the second cosine factor:

7100077t + e*jl()()()rrl

2
5 c0s(20071)e/ %7 + 5 cos(2007t)e 007

g3(t) = 10 cos(2007t)

Il
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The Fourier transform of this expression is found from the properties of linearity (5.10), fre-
quency shifting (5.18), and the transform of cos (wyt) from (5.11):

Gi(w) = 57[8(w — 2007 — 10007) + 8(w + 2007 — 100077)]
+ 57[8(w — 2007 + 10007) + 8(w + 2007 + 10007)].

In final form, we write
Gi(w) = 57[8(w — 12007) + 8(w — 8007) + 8(w + 8007) + 6(w + 12007)].

The frequency spectra of g,(¢), g»(t), and g5(¢) are shown in Figure 5.10.
It is of interest to engineers that the inverse Fourier transform of G3(w) is

g3(t) = FH5m[8(w — 12007) + 6(w + 12007)]}
+ FY57[8(w — 8007) + 8(w + 8007)]}
= 5c¢0s 12007t + 5 cos 8007t.

Gi(w)
27—
—2007 2007 (&}
(a)
Gr()
S S
—10007 10007 ®
(b)
G;(w)
Sm S 5w S
—1200m  —800m 8007 12007 @ Figure 5.10 The frequency spectrum of

(c) 10 cos (20077t )cos (10007t ).

Time Differentiation

It )
f(t) <> F(w),
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dlf(t -
m <> joF(0). (5.19)
dt
The differentiation property can be stated more generally for the nth derivative as
d"[f(t %
% <> (jo)"F (). (5.20)

EXAMPLE 510  Fourier transform of the signum function
We now find the Fourier transform of the signum function shown in Figure 5.11(a):
f(t) = sgn(r).
1,t>0

sgn(f) =41 0,t=0
-1,t<0

il

(a)

The derivation of F(w) is simplified by means of the differentiation property. The time deriv-
ative of sgn(¢) is shown in Figure 5.11(b) and is given by

dlf(n]
T 268(1).
d[sgn(n)] _ df (1)
dr = ar ~ 290
2
0 t
(b)
Because 6(¢) <751 (5.8),
joF(w) = 2.
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5 2
sgn(t) <> —. (5.21)
Jw
Time Integration
If
f(t) <" F(o),
then
J 5 F(w)
g(t) = f(r)dr <— ]— + 7F(0)6(w) = G(w), (5.24)
5o w
where
F(0) = F(w) = / f()dr,
w=0 —00
EXAMPLE 5.12  The time-integration property of the Fourier transform
t+ /2 t — /2
x(t) = Arectf —— | — Arect| ————
1 1
x(t)
A
4
t =l 0
” v = [ v 1 r
LU f(~)dr I —A
(a) (b)
Y(w)7
¥() 4
Aty
NN\ N\
- : _4m 2w 21 41 61 w
©) h [ ) 5 1 5

Figure 5.13 System and waveforms for Example 5.12.
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X (w) = At sinc(tiw/2)[e/*? — e/oh'2]
= 2j At sinc(tiw/2)sin(tw/2)
sin(tyw/2
= joAf] sinc(tlw/Z)[(ilw)}
tw/2

= jwAt} sinc’(tw/2).

Next, we use the time-integration property to find
1
Y(w) = j—X(w) + 7X(0)6(w),
w

where X(0) = 0, as can be determined from the previous equation or by finding the time-
average value of the signal shown in Figure 5.13(b). Therefore, the frequency spectrum of the

output signal is given by
Y(w) = At} sinc’(t0/2).
Triangular waveforms, such as the one shown in Figure 5.13(c), are sometimes

generalized and named as functions. There is no universally accepted nomenclature
for these triangular waveforms. We define the triangular pulse as

1 —— t <T
tri(t/T) = 7 M
0, It =T
tri(t/T) <> T sincX(T wl2). (5.27)

Frequency Differentiation

The time-differentiation property given by (5.20) has a dual for the case of differen-
tiation in the frequency domain. If

f(1) <5 F(w),

then

- 5 d"F(w)
(=j)"f(@t) < T (5.28)
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DC Level

Equation (5.9) gives the transform pair

ejw“t <> 277'6((1) - (l)()).
If we allow w, = 0, we have
1 <55 278(w), (5.29)

which, along with the linearity property, allows us to write the Fourier transform of
a dc signal of any magnitude:

K <% 20K§(w). (5.30)
By comparing this transform pair with that of an impulse function in the time
domain,
[eq(5.8)] 5(t) <™ 1,

Unit Step Function
The Fourier transform of the unit step function can be derived easily by a consider-
ation of the Fourier transform of the signum function developed in (5.21):
g 2
[eq(5.21)] sgn(t) <— ]—
w

As illustrated in Figure 5.14, the unit step function can be written in terms of the
signum function:

u(r) = 31 + sgn(r)].

sgn() u(ty = 5 [1 + sgn(0)]
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u(t) <*> w8(w) + L (5.31)

jo
Exponential Pulse

The signal f(t) = e “u(t), a > 0, is shown in Figure 5.17(a). The Fourier transform
of this signal will be derived directly from the defining Equation (5.1):

1
a+ jo

o0 o0
F(w) = / e~ u(t)e ldt = / gt gy
% 0

The frequency spectra of this signal are shown in Figures 5.17(b) and (c).
It can be shown that this derivation applies also for a complex, with
Re{a} > 0. Therefore, the transform pair can be written as

|

“ay(r), R > <2 .
e “u(t) e{a} P

(5.34)

f(t) =e “u(t),a>0

0.368 | —
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Fourier Transforms of Periodic Functions

[eq(4.11)] f@©) = > Cre*e,
k=—00
where
1 —jkawyt
[eq(4.23)] Cr == | f(He ™4,
Ty J,

We now will derive a method of determining the Fourier transform of periodic
signals.
By (5.1), the Fourier transform of (4.11) yields

nm:/[EQWqﬂWZECk(WWWM
—00| k=—00 k=—00 —o0

From (5.9) and (5.10),

k_z Cefker <Z> 2wk_2 Crd(w = ka). (5.35)
Example
_Jf@®), -Tg2=t=Tyl2
8(0) = {O elsewhere ’ (3:36)
f@) = Z g(t — nTy). (5.37)

Because from (3.18),

g(ty*8(t — 1) = g(t — to),
fO) = S g0y st — nTo) = g(O)* S 8(t — nTy).

n=—0 n=—090

The train of impulse functions is expressed by its Fourier series

> 8(t — nTo) = D, Cpe™,

n=—00 n=—00
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where

Ty2 00
1 .
Cn = |: E 6(T = mT()):|e_’"“’"td1‘.
Ty -1y

m=—00
Within the limits of integration, the impulse function will be nonzero only for
m = 0. Therefore,

1 (T2

1
C,=— o(H)dt = —.
ToJ-1yp2 ® T

Hence, according to the convolution property of the Fourier transform (5.16),

1 = . 2 =
F(w) = G(w)of{— 2 e]”“’"’} = —G(w) 2 8(w — nwy),
T()n:—OO TO n=—00
5.4 SAMPLING CONTINUOUS-TIME SIGNALS
f(0) Analog-to- | f(nTy)
—> digital ——=
converter To computer
A
Control signal
from computer Figure 5.20 An analog-to-digital converter.

Impulse Sampling

The ideal impulse sampling operation is modeled by Figure 5.21 and is seen to be a
modulation process (modulation is discussed in Chapter 6) in which the carrier sig-
nal 67(¢) is defined as the train of impulse functions:

sr(t) = > 8(t — nTy). (5.39)
or (1) =2 o(t —nT)
0 A
i \>_</ > 50 Figure 5.21 Impulse sampling.

£(0) = f(0)81(t) = f(t) X 8(t — nTy) = 2 f(nT5)d(t — nTs).  (5.40)

n=—00 n=—00
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f0)
ATy)

) fl(n — 1Ty

£(0) ""\1;('1 ;)
[T\

| 4 | |
/ \/ZTS—TS 0 Ty 2T\ U nT\
(n—DTs fl(n+ I)T\]

(a)

o7(t) =E o(t — nTy)

n=—w

RRRRRRRRRENENES

—2Ty—Ts 0 Ty 2Ts 3T n—l)T\ (n+ DTy ¢
nT‘
(b)
fs(t) = f(0)o1(t)
NS
e // \
7 \ A‘\’
/ \ f\

o 'A \‘ 2
Ny | 0 Ty 2Ty TS 2
/ N\ /

/ ~ <~ (,1—1)T5

(c)

Figure 5.22 Generation of a sampled-data signal.

Fyw) = —F(w) |:wsk22_008(w = kws):| = TL :2 F(w)*6(w — kwg).

113

(5.42)

Recall that because of the convolution property of the impulse function [see (3.23)],

F(w)*(w — kwg) = F(o — kwyg).

Thus, the Fourier transform of the impulse-modulated signal (5.40) is given by

Fy(w) = :2 F(ow — kwyg).

1
Tsk —00

(5.43)
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Flw)

—wpg wp w

Figure 5.23 The frequency spectrum of a sampled-data signal.
Shannon’s Sampling Theorem

A function of time f(¢), that contains no frequency components greater than f,
hertz is determined uniquely by the values of f(¢) at any set of points spaced

Ty/2 (Ty, = 1/fy) seconds apart. Hence, according to Shannon’s sampling theo-
rem, we must take at least two samples per cycle of the highest frequency compo-
nent in f(¢).

Frequency Response of Linear Systems

Fourier transforms can be used to simplify the calculation of the response of linear
systems to input signals. For example, Fourier transforms allow the use of algebraic
equations to analyze systems that are described by linear, time-invariant differential
equations.
Consider the simple circuit shown in Figure 5.25(a), where v,(¢) is the input signal
and v,(¢) 1s the output signal. This circuit can be described by the differential equations
di(t di(t)

vi(t) = Ri(t) + LT) and v, (t) = L s
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i) R

Vi(w) Vi) = Vi(w)H(w)
> H(a)) >

Figure 5.25 An electrical network and its
(b) block diagram.

If we take the Fourier transform of each equation, using the properties of lin-
earity and time derivative, we get
Vi(w) = RI(w) + joLl(®w) and Vjy(w) = jolLl(w).
From the first equation, we solve algebraically for /(w):
I@) = = Vi)
TR+ joL 1

Substituting this result into the second equation yields

joL
Vi(w) = Lvl(w),

R + jow

which relates the output voltage of the system to the input voltage.
We define a function

Hw) = 22— (544)
R + joL
and write the input—output relationship for the system as
Vi) = H(w)V (o), (5.45)
or
Vi(w
H(w) = V?Ew; (5.46)
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Because the quantity H(w) determines the output of the circuit for any given
input signal, it is commonly called the transfer function of the system. The relation-
ship of (5.45) is illustrated in Figure 5.25(b).

6.1 IDEAL FILTERS
|H()|
1
|
Stopband Pklsslband Stopband
—w, 0 , ®
(a)
|H()|
—————— 1 ——— ———
Passband | Stopband | Stopband Passband
—a. 0 . )
(b)
|H(w)|
St !
b,OP_ Passband Stopband Passband| Stopband
and 1
—w, —w 0 ] > ®
(c)
|Hw)|
1 —
Pass- . ! o
I Stopband Passband Stopband|Passband
band |
Tw2 T 0 1 @2 “  Figure 6.1 Frequency responses of four
(d) types of ideal filters.
EXAMPLE 6.1 Application of an ideal high-pass filter

Two signals,

g1(t) = 2co0s(2007rt) and g,(t) = Scos(10007t),

have been multiplied together as described in Example 5.9. The product is the signal

5(t) = 5¢0s(12007t) + Scos(800t).

For this example, assume that a certain application requires

g4(t) = 3cos(12007t).
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This can be obtained from g;(¢) by a high-pass filter. The Fourier transform of g4(¢) is found,
from Table 5.2, to be

Gy(w) = 37[6(w — 12007) + 8(w + 120077)].
Similarly, the Fourier transform of g3(¢) is found by Table 5.2 and the linearity property:

Gi(w) = 57[8(w — 8007) + 8(w + 8007)]
+ 57[8(w — 12007) + &(w + 120077)].

The frequency spectra of g,(¢) and gs(¢) are shown in Figure 6.4(a) and (b), respectively. It
can be seen that if the frequency components of G3(w) at @ = +12007r are multiplied by 0.6,
and if the frequency components at = £8007 are multiplied by zero, the result will be the
desired signal, G4(w). An ideal high-pass filter that will accomplish this is shown in Figure 6.4(c).
The filtering process can be written mathematically as

Gy(w) = G3(0)H (w),

where
H(w) = 0.6[]1 — rect(w/2w,)], 8007 < w, < 12007. |
|G4()|
I PR tr
—12007 =800 O 800 12007 ®

(a)

3(w)|

|Gs(w
TS# 1577 1517 TSW

—12007 —w, —8007 0 ] 8007 12007 [}
(b)
|H,(w)|
____b6] _______
| | ¢ ¢ | |
—12007 —w. —800m 0 8007 @, 12007 w
(c) Figure 6.4 Figure for Example 6.1.

skokesk
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V.

LAPLACE TRANSFORM

7.1 DEFINITIONS OF LAPLACE TRANSFORMS

We begin by defining the direct Laplace transform and the inverse Laplace trans-
form. We usually omit the term direct and call the direct Laplace transform simply
the Laplace transform. By definition, the (direct) Laplace transform F(s) of a time
function is f(¢) given by the integral

DO = Fils) = / fwer, (7.1)

where ¥,[ -] indicates the Laplace transform. Definition (7.1) is called the bilateral,
or two-sided, Laplace transform—hence, the subscript b. Notice that the bilateral
Laplace transform integral becomes the Fourier transform integral if s is replaced by
jow. The Laplace transform variable is complex, s = o + jo. We can rewrite (7.1) as

F(S)Z /f([)e—(o’+fw)tdt: /m(f(t)e_”’)e_fwdt

to show that the bilateral Laplace transform of a signal f(¢) can be interpreted as
the Fourier transform of that signal multiplied by an exponential function e”“".

The inverse Laplace taransform is given by

C+j00
i) = LYFG)) = i/ ~ F(s)e"ds.j = V-1, (7.2)
C*]X

We now modifiz Definition (7.1) to obtain a form of tvhe'Laplace transform
that is useful in many applications. First, we express (7.1) as

Lulf ()] = Fy(s) = [ e + A f()e™ dt. (7.3)

Next, we define f(r) to be zero for t < 0, such that the first integral in (7.3) is zero. The
resulting transform, called the unilateral, or single-sided Laplace transform, is given by

IL0)] = F(s) = / e d. (7.4)

The Laplace-transform variable s is complex, and we denote its real part as o
and its imaginary part as w; that is,

s =0 + jo.

Figure 7.1 shows the complex plane commonly called the s-plane.

If f(¢) is Laplace transformable [if the integral in (7.4) exists], evaluation of
(7.4) yields a function F(s). Evaluation of the inverse transform with F(s), using the
complex inversion integral, (7.2), then yields f(¢). We denote this relationship with

f@t) <5 F(s). (7.5)
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Im (s) S
jw
o<0 o>0
w>0 w>0
Re(s)
o
o<0 o>0
w<0 w<0

Figure 7.1 The s-plane.

EXAMPLE 7.1 Laplace transform of a unit step function

The Laplace transform of the unit step function is now derived for the step occurring atz = 0.
From (7.4) and (7.12),

o0

Llu(r)] = A u(t)e S'dt = [ e dt

& _j
=—|lime®*—1]
0 § |

Hence, the Laplace transform of the unit step function exists only if the real part of s is
greater than zero. We denote this by

e*ST

)

Llu(t)] = % Re(s) > 0,
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EXAMPLE 7.2 Laplace transform of an exponential function

We next derive the Laplace transform of the exponential function f(t) = e™*. From (7.4),

o0 >
/ e—ate—sldt = / e—(s+n)rdt
J0 JO

©
= lim e 69" — 1 |,
o Ss+aliow

This transform exists only if Re(s + a) is positive. Hence,

F(s)

ef(xﬂz)r

—(s + a)

Fle™] = Re(s + a) > 0,

s +a

Laplace transform of an impulse function

Lot — 1))] = / 8(t — to)e™Sldt = e = e
J0 =ty
Hence, we have the Laplace transform pair
8(t — 1) <> e, (7.19)

For the unit impulse function occurring at t = 0 (¢, = 0),
5(t) <5 1.

Laplace transforms of an sinusoidal functions

ejbr + e—jbt

cos bt = 5

Hence,
F[cos bt] = %[,SE[e/b’] + $le™)
by the linearity property, (7.10). Then, from (7.14),

E!’[cosbt]—l : + . _ DTS- @
- " 2|s—jb s+jp| 2(s—jb)(s +jb) 2+ b

By the same procedure, because sin bt = (e/* — e77%")/2],

1 : Bl 3 1
. — = ]bf o “/bt = — -
S[sin bt] 2].[»59[6 ] = £le™]] 2j |:s —jb s+ jb:|
s+jb—s+jb b

T 2j(s — jb)(s + jb) 2+ B
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el + e—jbt:| e (a=jb)t 4 p—(atjb)

—at _ ,at _
e “cosbt = e |: 5 5 .

thus,

1 1 1
Fle ™™ =i *
e~ casbi] 2[s +a—jb s+a+jb]

_sta+tjb+ts+ta—-jb s+a
2(s +a—jb)(s +a+jb) (s+a)P+b*

Note the two transform pairs

p S
cos bt «— —

s? + b?

and

7 I
e cos bt <> > 7a 5
(s +ay + b°

b
(s + a) + b*

e % sin bt <>

74 LAPLACE TRANSFORM PROPERTIES

In Sections 7.1 through 7.3, two properties were derived for the Laplace transform.
These properties are

[eq(7.10)] Fla fi(t) + axf>(1)] = a1Fi(s) + axF(s)
and
[eq(7.20)] Llef(1)] = F(s) . = F(s + a).
LIf(t — tout — ty)] = e ™F(s), (722)
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EXAMPLE 7.4 Laplace transform of a delayed exponential function

Consider the exponential function shown in Figure 7.6(a), which has the equation
f(t) — Sef().."‘t.

where 7 is in seconds. This function delayed by 2 s and multiplied by u(t — 2) is shown in
Figure 7.6(b); the equation for this delayed exponential function is given by

fi(t) = 5e7 03Dyt — 2).

Se
s+ 03°

LIfi()] = Fi(s) = e ¥F(s) =

Differentiation

We next consider two of the most useful properties of the Laplace transform, which
are related to differentiation and integration. The differentiation property was de-
rived in Section 7.2 and is, from (7.15),

3[?} = sF(s) — f(07). (7.24)

Property (7.24) is now extended to higher-order derivatives. The Laplace
transform of the second derivative of f(¢) can be expressed as

o farw] o df
.93[ " J-gg[dt} Fi=—5 (7.25)

Then, replacing f(¢) with f'(¢) in (7.24), we can express (7.25) as

[d%@)

£
dr?

J = s£[f' (0] = f'(07),

— o= sf2(07) — Fn=D(0), (7.29)
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EXAMPLE 7.7 Illustration of the differentiation property

Consider the Laplace transform of sin bz, from Table 7.2:

b

2 ik

2+ b

S[sin bt] =

Now, sin bt can also be expressed as

. _1d
sin bt = b di (cos bt).

We use this result to find &[sin bt]. From the differentiation property (7.24) and Table 7.2,

1 d
%|: s E(COS bt)il

= —%{séﬁ[cos bt] — cos bt

#[sin bt]

t—*()‘:|

g2 _qll = =2
& & B s+ b

Integration

The property for the integral of a function f(¢) is now derived. Let the function g(z)
be expressed by

g(r) = Af(f) dr.

52[ A f(f)dTJ - %F(s). (7.31)

We illustrate this property with an example.

Illustration of the integration property

Consider the following relationship, for ¢t > 0:
of i
/ u(t)dr = 7| =1t
JO 0

II.2-Continuous Linear Time Invariant Systems




Mohammad M. Banat - EE 260: Signal and System Analysis 124

V: Laplace Transform

The Laplace transform of the unit step function is 1/s, from Table 7.2. Hence, from (7.31),

éf[[] = =(£|:/0Ll(’l’) dTi| = ég(g[u([)] = %% — 12’

s
which is the Laplace transform of f(¢) = ¢. Note that this procedure can be extended to find
the Laplace transform of ", for n any positive integer. |

Transfer Functions

As stated earlier, we prefer to model continuous-time systems with linear differential
equations with constant coefficients. The models are then linear and time invariant.
(See Section 3.5.) The general equation for the nth-order LTI model is given by

dy(t) & d“x()

a = b ! 7.47
,;0 oark 26 ark (Rl
[a,s" + ap_1s" '+ -+ a5 + ao]Y(s)

= [bys" + bp_1s" ' + oo+ bis + by X (s). (7.48)

The system transfer function H(s) is defined as the ratio Y (s)/X(s), from
(7.48). Therefore, the transfer function for the model of (7.47) is given by

Y(S) B b.s" + bnﬁlsn_l + .-+ bis + by

H(s) = = .
() X(s) as"+a,_s" M+ + as + ag

(7.49)

EXAMPLE 7.12 LTI system response using Laplace transforms

Consider again the RL circuit of Figure 7.8, and let R = 4Q and L = 0.5H. The loop equa-
tion for this circuit is given by

OSM + 4i(t) =
Sl i(t) = v(r).

The Laplace transform of the loop equation (ignoring initial conditions) is given by
(0.5s + 4)I(s) = V(s).

We define the circuit input to be the voltage v(¢) and the output to be the current i(¢); hence,
the transfer function is
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I(s) 1
V(s) 05s+4°

H(s) =

Note that we could have written the transfer function directly from the loop equation and
Equations (7.47) and (7.49).
Now we let v(t) = 12u(t). The transformed current is given by

1 12 24
05s+4 s s(s+38)°

I(s) = H(s)V(s) =

The partial-fraction expansion of /(s) is then

24 ky ks
[ = = — 4+ -
() S(s+8 s §+8

)

where (see Appendix F)

24 24
k = _— — — 3
l s|:s(s + 8):|5—0 s+ 8 s=0
and
24 24
ky = (s + — = — = =3,
2= (s 8)[S(s + S)l—-s P
Thus,
24 3 -3

= 6+9 s ses

and the inverse transform, from Table 7.2, yields
i(t) = 3[1 — e
fort > 0.

If the numerator and denominator polynomials in (7.49) are presented in
product-of-sums form, the transfer function is shown as

K(S o ZI)(S - ZZ)"'(S - Zm)
(5 = p)(s — p) s = Do)

H(s) = (7.50)
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EXAMPLE 7.13 Poles and zeros of a transfer function

A transfer function is given in the form of (7.49) as

4s + 8

H(s)=—F—"".
25+ 8+ 6

The transfer function is rewritten in the form of (7.50) as

2(s + 2)

HS) = D6 +3)
We now see that this transfer function has one zero at s = —2 and two poles located at
s = —1 and s = —3. The poles and the zero of the transfer function are plotted in the s-

plane in Figure 7.10. It is standard practice to plot zeros with the symbol ® and poles with
the symbol X.

Im (s) 4

jo

Re(s)

L@

Figure 7.10 |
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Convolution

o0

v(t) = x(t)*h(t) = /Oox(r)h(t — )T, (7.51)

Y1) = h(t)*x(t1)=Y(s) = H(s)X(s). (7.55)

H(s) = A | h(t)e™ dt. (7.56)

EXAMPLE 7.14  Response of LTI system from the impulse response

The unit step response is calculated for an LTI system with the impulse response A(t) given in
Figure 7.12(a). We express this function as

h(t) = u(t) — u(t — 1).

h(r) y(0)

0 1 t 0
(a) (b) Figure 7.12 Signals for Example 7.14.

Using the real-shifting property, we find the Laplace transform of A(t) to be

H(s) = L —e™

Note that this transfer function is not a rational function. From (7.55), the system output Y(s)
is then

1—e*1 1
=Sk -
&

Y(s) = H(s)X(s) =

From the Laplace transform table and the real-shifting property, we find the system output
to be

y(t) = tu(t) — [t — u( — 1).
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EXAMPLE 7.16  Inverse transform involving repeated poles

The unit step response of a system with the third-order transfer function

Y(s)

_ 4’ +4s+ 4
X(s)

s3 + 357 + 2s

H(s)
will be found. Hence, x(¢) = u(t) and X(s) = 1/s. The system output is then

452 + 45 + 4 [ 1
Y(s) = His)X(s) = ————( = ).
) )2t s+ 357 + 25 <S>

Because this function is not in Table 7.2, we must find its partial-fraction expansion:

s+ 1)(s+2) s s s+1 s+2°

45 + 45 + 4 ki ks k k
Y(s) =5 —— =2, 0 :

We solve first for k|, k3, and ky:

45’ + 4s + 4 4
TG DD 2
~:4s2+4s+4 :4—4+4:4_
" S # 2 e (1)(1) ’
k4:4s27+4s+4 _l6-8+4
s(s+ 1) |s= D=1

We calculate k, by Equation (F.8) of Appendix F:

d , d|4s> +4s + 4
ky = ——[s2Y(8)]s=0 = o | >————
2= 45 S ls-0 ds[s3+3s+2:|s_n

(P 35+ 2)(8s +4) — (457 + 45 + 4)(2s +3)
[s2 + 35 + 2]

_ Q@ - @) _

s=0

o
4
The partial-fraction expansion is then
42 +4s5+4 2 -1 4 -
IR Ll Lk T W PO S T
s(s*+3s+2) s° s 541 w2

which yields the output signal

y(t) =2t — 1 + 4 — 3¢7%,

128
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7.7 LTISYSTEMS CHARACTERISTICS

In this section, we consider the properties of causality, stability, invertibility, and
frequency response for LTI systems, relative to the Laplace transform.

Causality

The unilateral Laplace transform requires that any time function be zero for r < 0.
Hence, the impulse response /(f) must be zero for negative time. Because this is
also the requirement for causality, the unilateral transform can be applied to causal

systems only. The bilateral Laplace transform, introduced in Section 7.8, must be
employed for noncausal systems.

Stability

We now relate bounded-input bounded-output (BIBO) stability to transfer func-
tions. Recall the definition of BIBO stability:

BIBO Stability
A system is stable if the output remains bounded for all time for any bounded input.

We express the transfer function of an nth-order system as

Y(S) _ bnsn + bn—lsn—l + -+ bls + by

eq(7.49 H(s) = = ’
[ q( )] ( ) X(S) a”sn s an—lsnﬁl I as + ap

where a, # 0. The denominator of this transfer function can be factored as
ansn * an—lsni1 + e a5t ag= (I,,(S - p])(S - pl)(~S - pn)' (760)

The zeros of this polynomial are the poles of the transfer function, where, by defin-
ition, the poles of a function H(s) are the values of s at which H(s) is unbounded.
We can express the output Y (s) in (7.49) as

Y( ) b,,s” E bn_lsn_l + - + bIS =t b()X( )
S) = s),
ay(s — p1)(s = p2)-- (s = pa)

k k k
=—= $—2 4 . p—72
S—p S—D 5 = By

+ Y5y, (7.61)

The inverse transform of (7.61) yields

y(t) = kieP' + kpeP? + oo + kP + y (1)
= Ye(t) + yx(0). (7.62)
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00

/ Figure 7.13 Stable region for poles of
H(s).

We see from the preceding discussion that an LTI system is stable, provided
that all poles of the system transfer function are in the left half of the s-plane—that
is, provided that Re(p;) < 0,i = 1,2, ..., n. Recall that we derived this result in
Section 3.6 by taking a different approach. The stable region for the poles of H(s) in
the s-plane is illustrated in Figure 7.13.

EXAMPLE 7.17  Stability of an LTI system

A much-simplified transfer function for the booster stage of the Saturn V rocket, used in trips
to the moon, is given by

09402 0.9402
s2 —0.0297 (s + 0.172)(s — 0.172)°

H(s) =

where the system input was the engine thrust and the system output was the angle of the
rocket relative to the vertical. The system modes are e *!"* and e”!7%; the latter mode is
obviously unstable. A control system was added to the rocket, such that the overall system
was stable and responded in an acceptable manner. |

Invertibility

We restate the definition of the inverse of a system from Section 2.7 in terms of
transfer functions.

Inverse of a System
The inverse of an LTI system H(s) is a second system H;(s) that, when cascaded with
H(s), yields the identity system.

Thus, H,(s) is defined by the equation

H(s)H{(s) = 1= Hys) = #s) (7.64)
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Bus" + bp_1s" 1+ - + by

H(s) = ; 7.65
) aps" + a, 15"+ -+ ag e
Hence, the inverse system has the transfer function
aps" + ay_1s" M+ -+ a
Hs) = = e 2. (7.66)
bnSn + b,,_ls” o wen o b()
Frequency Response
Recall from (5.1) the definition of the Fourier transform:
F(o) = F[f(1)] = / f(0)e ™ dt. (7.67)

From Section 5.5, using the Fourier transform, we find that the transfer function for
a causal system with the impulse response A(t) is given by

Hi(w) = F[h(1)] = A h(t)e 7 dt. (7.68)
Comparing this transfer function with that based on the Laplace transform, namely,

H(s) = $[h(t)] = / h(t)e™" dt, (7.69)
0
we see that the two transfer functions are related by

Hp(w) = Hi(s) = Hj(jo). (7.70)

sS=jw

Y(jo) _ by(jo)" + b,_y(jw)" " + -+ + bi(jw) + by

H(jw) = = ;
U9 = X(a) ~ auio)® + anao)™ S + - + ao) + 2

(7.71)
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VI. DISCRETE TIME SYSTEMS

In summary, a discrete-time signal is an ordered sequence of numbers. The se-

quence is usually expressed as {f[n]}, where this notation denotes the sequence

- f1=2], fI=11, f10], fI1], fI2], --.. We usually consider f[n], for n a noninteger,
to be undefined.

Unit Step and Unit Impulse Functions

We begin the study of discrete-time signals by defining two signals. First, the
discrete-time unit step function u[n] is defined by

1, n=0
=47 - 9.9
uln] {0, "= 9.9)
. 1, n= ny
uln — ny| = {0’ n<n, (9.10)
uln] | uln — ng)
| I | ‘ | ‘ ‘ ‘
:2 :1 0 1 2 3 n :1 0 I ) n{,'—l ny npt1 n
Figure 9.3 Discrete-time unit step functions.
1, n=0
0 = ’ 9.1l
"] {0, n# 0. ©-11)

-2 -1 0 1 2 n -1 0 1 ngp—1 ng np+1 n

Figure 9.4 Discrete-time unit impulse functions.
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_J1, n=mn
d[n — ng] = {O, 5 i (9.15)
d[n] = u[n] — u[n — 1]. (9.12)

9.3 CHARACTERISTICS OF DISCRETE-TIME SIGNALS

In Section 2.2, some useful characteristics of continuous-time signals were defined.
We now consider the same characteristics for discrete-time signals.

Even and Odd Signals

In this section, we define even and odd signals (functions). A discrete-time signal
X [n] is even if

x.[n] = x,[—n], (9.25)
and the signal x,[n] is odd if

x,[n] = —x,[—n]. (9.26)

Any discrete-time signal x[n] can be expressed as the sum of an even signal
and an odd signal:

x[n] = x[n] + x,[n]. (9.27)
To show this, we replace n with —n to yield
x[=n] = x[=n] + x,[-n] = x[n] = x,[n]. (9:28)
The sum of (9.27) and (9.28) yields the even part of x[n]:
X [n] = %(x[n] + x[—n]). (9.29)
The subtraction of (9.28) from (9.27) yields the odd part of x[n]:
xo[n] = 5(x[n] = x[~n]). (9.30)

The average value, or mean value, of a discrete-time signal is given by

, 1
A= Jim lk;Nx[k]. (9.31)

As is the case of continuous-time signals, the average value of a discrete-time signal
is contained in its even part, and the average value of an odd signal is always zero.
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Even and odd signals have the following properties:

The sum of two even signals is even.

The sum of two odd signals is odd.

The sum of an even signal and an odd signal is neither even nor odd.
The product of two even signals is even.

The product of two odd signals is even.

The product of an even signal and an odd signal is odd.

N R S

EXAMPLE 9.5 Even and odd functions

The even and the odd parts of the discrete-time signal x[#n] of Figure 9.13(a) will be found.
Since the signal has only six nonzero values, a strictly mathematical approach is used. Table 9.5
gives the solution, using (9.29) and (9.30). All values not given in this table are zero. The even
and odd parts of x[n] are plotted in Figure 9.13.

x[n]
3
2_
]1—
5 —4 -3 -2 -1 0 1 2 3 4 5 ,

TABLE 9.5 Values for Example 9.5

n x[n] x[—n] x,[n] x,[n]

—3 3 0 1.5 1.5
-2 2 3 2.5 -0.5
-1 1 3 2 -1
0 3 3 3 0
1 3 1 2 1
2 3 2 25 0.5
3 0 3 1.5 -1.5

The sum of all values of x,[n] is zero, since, for any value of n, from (9.26) it follows
that

Xo[n] + xo[—n] = x,4[n] — x,[n] = 0.

Note also that x,[0] is always zero.
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Signals Periodic in n

We now consider periodic discrete-time signals. By definition, a discrete-time signal
x[n] is periodic with period N if

x[n + N] = x[n]. (9.32)
Of course, both n and N are integers.

We next consider the discrete-time complex exponential signal that is not nec-
essarily obtained by sampling a continuous-time signal. We express the signal as

#[n] = %" = 1/Qqn. (9.37)

This signal can be represented in the complex plane as a vector of unity magnitude
at the angles Qyn, as shown in Figure 9.15. The projection of this vector onto the
real axis is cos (yn) and onto the imaginary axis is sin({2yn), since

/M = cos(Qon) + jsin(Qgn).

We now consider (9.37) in a different manner. The complex exponential signal
of (9.37) is periodic, provided that

x[n] = ej“n” - X[I’l e N] — ef((2(>"+(2(»N) — ef((2()n+27Tk)’ (938)

where k is an integer. Thus, periodicity requires that

Q()N = 2wk= Q() = %2’77, (939)
so that (), must be expressible as 277 multiplied by a rational number. For example,
x[n] = cos (2n) is not periodic, since €, = 2. The signal x[n] = cos(0.17n) is peri-
odic, since )y = 0.17r. For this case, k = 1,and N = 20 satisfies (9.39).

As a final point, from (9.39), the complex exponential signal ¢/ is periodic
with N samples per period, provided that the integer N satisfies the equation

2k
N = .
Oy

(9.40)

In this equation, k is the smallest positive integer that satisfies this equation,
such that N is an integer greater than unity. For example, for the signal
x[n] = cos(0.17n), the number of samples per period is

2mk
N =22 =20k =20, k =1. (9.41)
0.17
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For a final example, consider the signal x[n] = cos(27n). Then

_ 27k

N =——=k, (9.42)
2

and this equation is satisfied for N = k = 1. This signal can be expressed as
x[n] = cos(2mn) = 1.

Hence, the discrete-time signal is constant.

Signals Periodic in ()

The conditions for the complex exponential signal ¢/*" to be periodic in n were just
developed. However, this signal is always periodic in the discrete-frequency vari-
able (). Consider this signal with €}, replaced with ({, + 27)—that is,

ej((20+2'n')n — ejQUnejZTrn — ejQ(,n (943)

since ¢>™ = 1). Hence, the signal ¢/*" is periodic in Q with period 27, indepen-
g p p p

dent of the value of (). Of course, the sinusoidal signal cos({2yn + 6) is also peri-
odic in ) with period 27. This property has a great impact on the sampling of
signals, as shown in Chapters 5 and 6.

Note that periodic continuous-time signals are not periodic in frequency. For
example, for the complex exponential signal,

ej(w+a)t — ejwt ejat # e]a)t’ a# 0.

Discrete-time Systems

We now use an example of a system to introduce a common discrete-time sig-
nal. The block shown in Figure 9.17(a) represents a memory device that stores a
number. Examples of this device are shift registers or memory locations in a digital
computer. Every T seconds, we shift out the number stored in the device. Then a dif-
ferent number is shifted into the device and stored. If we denote the number shifted
into the device as x[n], the number just shifted out must be x[n — 1]. A device used
in this manner is called an ideal time delay. The term ideal indicates that the num-
bers are not altered in any way, but are only delayed.
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Ideal time
delay

x[n] x[n —1]
L. D e

Ideal time
delay ax[n — 1]

x[n] x[n—1] a <
D pP——

Multiplication

(a) (b) Figure 9.17 Discrete-time system.
x[n] = ax[n — 1]. (9.44)
Suppose that at the first instant (denoted as n = 0), the number unity is stored in

the delay; that is, x[0] = 1. We now iteratively solve for x[n], n > 0, using (9.44)
(recall that the ideal time delay outputs its number every 7 seconds):

x[1] = ax[0] = a;
£[2] = ax[1] = a*
x)3] = ax[2] = &%

x[n] = ax[n — 1] = a".
Thus, this system generates the signal x[n] = " for the initial condition x[0] = 1.

yln] = T(x[n]). (9.59)

This notation represents a transformation and not a function; that is, 7(x[n]) is not
a mathematical function into which we substitute x[n] and directly calculate y[n].
The set of equations relating the input x[n] and the output y[n] is called a
mathematical model, or, simply, a model, of the system. Given the input x[n], this set
of equations must be solved to obtain y[n]. For discrete-time systems, the model is
usually a set of difference equations.

x|[n] y[n]

—>| System [—> Figure 9.22 Block diagram for a discrete-
Input Output  time system.
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Interconnecting Systems

We define two basic connections for systems. The first, the parallel connection, is il-
lustrated in Figure 9.23. The circle in this figure denotes the summation of signals.

|
|
: System
' . yaln]
I e - Figure 9.23 Parallel connection of systems.
f e 1 l
I
x[n] viln v[n
(7] System il l System il

Figure 9.24 Series, or cascade, connection
P P S PP o of systems.

Let the output of System 1 be y,[n] and that of System 2 be y,[n]. The output signal
of the total system, y[n], is given by

ylnl = yiln] + yo[n] = T1(x[n]) + Ta(x[n]) = T(x[n]), (9.61)

where y[n] = T(x[n]) is the notation for the total system.

The second basic connection for systems is illustrated in Figure 9.24. This con-
nection is called the series, or cascade, connection. In this figure, the output signal of
the first system is y,[n] = T(x[n]), and the total system output signal is

ylnl = To(yi[n]) = To(T'(x[n])) = T (x[n]). (9.62)
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EXAMPLE 9.9

a0l

Interconnection of a discrete system

Consider the system of Figure 9.25. Each block represents a system, with a number given to
identify each system. We can write the following equations for the system:

yi[n] = T(x[n]) + T»(x[n])
and
va[n] = T5(ys[n]) = T5(T(x[n]) + Tx(x[n])).
Thus,

ylnl = ya[n] + ys[n]
= Tx(x[n]) + T5(Ty(x[n]) + Ta(x[n])) = T(x[n]).

This equation denotes only the interconnection of the systems. The mathematical model of
the total system will depend on the models of the individual subsystems.

valn] yaln]

y[n]

y2[n]

Figure 9.25 System for Example 9.9. |

9.6 PROPERTIES OF DISCRETE-TIME SYSTEMS

In Section 9.5, the Euler integrator and the a-filter were given as examples of discrete-
time systems. In this section, we present some of the characteristics and properties of
discrete-time systems.

In the following, x[n] denotes the input of a system and y[n] denotes the out-
put. We show this relationship symbolically by the notation

x[n] — y[n]. (9.63)

As with continuous-time systems, we read this relation as x[n] produces y[n]. Rela-
tionship (9.63) has the same meaning as

[€q(9.59)] yln] = T(x[n]).

The definitions to be given are similar to those listed in Section 2.7 for continuous-
time systems.

Systems with Memory

We first define a system that has memory:

Memory
A system has memory if its output at time n, y[ny], depends on input values other than
x[ng]. Otherwise, the system is memoryless.
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For a discrete signal x[#n], time is represented by the discrete increment variable 7.
An example of a simple memoryless discrete-time system is the equation

y[n] = Sx[n].

A memoryless system is also called a static system.
A system with memory is also called a dynamic system. An example of a sys-
tem with memory is the Euler integrator of (9.5):

y[n] = y[n — 1] + Hx[n — 1].

Recall from Section 9.1 and (9.8) that this equation can also be expressed as

n—1

yln] = H E x[k], (9.64)

k=—00

and we see that the output depends on all past values of the input.

A second example of a discrete system with memory is one whose output is
the average of the last two values of the input. The difference equation describing
this system is

y[n] = x[n] + x[n — 1]]. (9.65)

x[n] v[n]

0.5 p——

Delay

Figure 9.26 Averaging system.
Invertibility

We now define invertibility:

Invertibility
A system is said to be invertible if distinct inputs result in distinct outputs.

A second definition of invertibility is that the input of an invertible system can be
determined from its output. For example, the memoryless system described by

y[n] = [x[n]]

is not invertible. The inputs of +2 and —2 produce the same output of +2.
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VII. Z TRANSFORM
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