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SYLLABUS 

Course Catalog 

3 Credit hours (3 h lectures). Discrete and continuous time systems: classifications, convolution and impulse response. 
Orthogonal expansions and Fourier series. Fourier transform. Laplace transform. Z-transform. System function. 
Computer applications. 

Textbook 

Signals, Systems, and Transforms, Charles  L. Philips, Fourth Edition, Printice Hall , ISBN 0-13-206742-0. 

References 

1. Roberts & Gasbel. Linear Signals & Systems. 3nd ed. 

Instructor 

Instructor:  Dr. Mohammad M. Banat 

Email Address:  banat@just.edu.jo  

Prerequisites 

Prerequisites by topic Circuits, Linear Algebra 

Prerequisites by course EE 210, EE 240 

Prerequisite for EE 360 

Topics Covered 

Week Topics Chepters in Text 
1-4 Continuous Time Signals and Systems 3 
5 Fourier Series 4 

6-8 Fourier Transform and Applications 5-6 
9 Laplace Transform 7 

10-13 Discrete Time Signals and Systems 9-10 
14 z Transform 11 
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Objectives and Outcomes 

Objectives Outcomes 

1. Classifying signals and 
systems as represented by their 
mathematical models [1] 

1.1. Defining basic operations such as time scale, time shift, time 
reverse, and combinations of these operations for signals. [1] 

1.2. Learning properties and classification of   continuous-time as well 
as discrete-time signals [1] 

1.3. Determine continuous- as well as discrete-time system 
characteristics (e.g., causality, linearity, time-invariance, etc.)  [1] 

2. Analyzing both continuous and 
discrete linear time-invariant 
systems in the time domain [1] 

2.1. Determining & applying differential equation models for linear 
time-invariant systems and circuits  ( continuous-  and discrete-
time) [1] 

2.2. Using graphical and analytical methods to compute a convolution 
(continuous time and discrete-time) [1] 

3. Applying the Fourier 
representation of signals and 
systems to analyze continuous 
linear systems in the frequency 
domain [1] 

3.1. Calculating Fourier series expansions for periodic continuous-time 
signals and plot line spectra [1] 

3.2. Implementing the forward and inverse Fourier transforms to 
analyze signals and systems [1] 

3.3. Obtaining frequency response of a system using Fourier Transform 
[1] 

3.4. Using Fourier transform methods for analysis of linear systems [1] 

4. Implementing the Laplace 
representation of signals and 
systems in analyzing linear 
systems[1] 

4.1. Performing Laplace transform for signals [1] 
4.2. Identifying system transfer function [1] 
4.3. Using Laplace transform methods for analysis of continuous-time 

linear systems [1] 

5. Applying the discrete Fourier 
representation and Z-
transform of signals and 
systems to analyze continuous 
linear systems in the frequency 
domain [1] 

5.1. Calculating the discrete-time Fourier transform of signals [1 
5.2. Identifying the Z-transform for discrete-time signals and plotting 

its region of convergence  [1] 
5.3. Differentiating between bilateral and unilateral Z-transforms [1] 
5.4. Using the forward Z-transform and inverse Z-transform to analyze 

signals and systems [1] 

Evaluation 

Assessment Tool Expected Due Date Weight 

Exam 1  20% 

Exam 2  20% 

Class Work  20% 

Final Exam  60% 

Contribution of Course to Meeting the Professional Component 

The course contributes to equip students with basic knowledge and skills in applied probability and random 
processes. 
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RELATIONSHIP TO PROGRAM OUTCOMES (%) 

A B C D E F G H I J K L 

            

RELATIONSHIP TO ELECTRICAL ENGINEERING PROGRAM OBJECTIVES 

PEO1 PEO2 PEO3 PEO 4 PEO 5 
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I. INTRODUCTION 

Engineers must model two distinct physical phenomena. The first is physical systems, which can 
be modeled by mathematical equations. For example, continuous-time, or analog, systems 
(systems that contain no sampling) can be modeled by ordinary differential equations with constant 
coefficients. A second physical phenomenon to be modeled is called a signal. Physical signals are 
modeled by mathematical functions. One example of a physical signal is the voltage that is applied 
to the speaker in a radio. Another example is the temperature at a designated point in a particular 
room. This signal is a function of time, since the temperature varies with time. We can express this 
temperature as 

 Temperature at a point ( )t   (I.1) 

where ( )t  has the units of, for example, degrees Celsius. To be more precise in this example, the 
temperature in a room is a function of time and of space. 

 Temperature at a point ( , , , )x y z t   (I.2) 

where the point in a room is identified by the three space coordinates x , y , and z . We limit 
signals to having one independent variable. In general, this independent variable will be time t . 

Signals are divided into two natural categories. The first category to be considered is continuous-
time signals, or simply, continuous signals. The second category for signals is discrete-time 
signals, or simply, discrete signals. 

A continuous-time signal is defined for all values of time. A continuous-time signal is also called 
an analog signal. A continuous-time system is a system in which only continuous-time signals 
appear. There are two types of continuous time signals. A continuous-time signal ( )x t  can be a 
continuous-amplitude signal, for which the time-varying amplitude can assume any value. A 
continuous-time signal may also be a discrete-amplitude signal, which can assume only certain 
defined amplitudes. An example of a discrete-amplitude continuous-time signal is the output of a 
digital-to-analog converter. For example, if the binary signal into the digital-to-analog converter 

is represented by eight bits, the output-signal amplitude can assume only 82 256  different 
values. 

A discrete signal is defined at only certain instants of time. For example, suppose that a signal 
( )f t  is to be processed by a digital computer. Since a computer can operate on only a number and 

not a continuum, the continuous signal must be converted into a sequence of numbers by sampling. 
This sequence of numbers is called a discrete-time signal. Like continuous-time signals, discrete-
time signals can be either continuous amplitude or discrete amplitude. A discrete-time system is a 
system in which only discrete-time signals appear. 
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I.1. Transformations of Continuous-Time Signals 

I.1.A. TIME TRANSFORMATIONS 

Time Reversal 

 ( ) ( )y t x t    (I.3) 

The time reversal operation is shown in Figure I.1. 

 

Figure I.1: Time reversal 

Time Scaling 

 ( ) ( ),y t x at a    (I.4) 

The time scaling operation is shown in Figure I.2. 

Time Shifting 

 0( ) ( )y t x t t   (I.5) 

General Transformation 

 ( ) ( )y t x at b   (I.6) 

Let 

 at b    (I.7) 

Then 

 
b

t
a a


   (I.8) 
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Figure I.2: Time scaling 

Example 

Let 

( ) 1
2

t
y t x    

 
 

Then 

2 2t    
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Figure I.3: Time transformation example 

I.1.B. AMPLITUDE TRANSFORMATIONS 

 ( ) ( )y t ax t b    (I.9) 

where a  and b  are constants. 

Example 

Let 

( ) 3 ( ) 1y t x t   
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Figure I.4: Amplitude transformation example 
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Example 

Next we consider the signal 

( ) 3 1 1
2

t
y t x    

 
 

which has time transformation and amplitude transformation. To plot this transformed signal, we 
first transform the amplitude axis, as shown below. The t-axis is redrawn to facilitate the time 
transformation. 

1 2 2
2

t
t       

 

Figure I.5: Time and amplitude transformation 

The signal is then plotted on the t -axis, as shown below. 

 

Figure I.6: Time and amplitude transformation 
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I.2. Signal Characteristics 

I.2.A. EVEN AND ODD SIGNALS 

By definition, the function (signal) is even if 

 ( ) ( )e ex t x t   (I.10) 

An even function has symmetry with respect to the vertical axis; the signal for 0t   is the mirror 
image of the signal for 0t  . The function  0( ) cosx t t  is an even function because 

   0 0cos cost t   . 

By definition, a function is odd if 

 ( ) ( )o ox t x t    (I.11) 

An odd function has symmetry with respect to the origin. The function  0( ) sinx t t  is odd 

because    0 0sin sint t    . 

 

Any signal can be expressed as the sum of an even part and an odd part; that is, 

 ( ) ( ) ( )e ox t x t x t   (I.12) 
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Note that 

 ( ) ( ) ( )e ox t x t x t    (I.13) 

Adding (I.12) and (I.13) and dividing by 2 yields 

  1
( ) ( ) ( )

2ex t x t x t    (I.14) 

Subtracting (I.13) from (I.12) and dividing by 2 yields 

  1
( ) ( ) ( )

2ox t x t x t    (I.15) 

The average value xA  of a signal ( )x t  is defined as 

 
1

lim ( )
2

T

x
T

T

A x t dt
T



   (I.16) 

The average value of a signal is contained in its even function, since the average value of a bounded 
odd function is zero. 

Even and odd functions have the following properties: 

1. The sum of two even functions is even. 
2. The sum of two odd functions is odd. 
3. The sum of an even function and an odd function is neither even nor odd. 
4. The product of two even functions is even. 
5. The product of two odd functions is even. 
6. The product of an even function and an odd function is odd. 

Example 

Consider the signal ( )x t : 

 

Following is the time-reversed signal ( )x t : 
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The two signals are added and scaled in amplitude by 0.5 to yield the even signal ( )ex t : 

 

Next, ( )x t  is subtracted from ( )x t , and the result is amplitude scaled by 0.5 to yield the odd 

signal ( )ox t : 

 

I.2.B. PERIODIC SIGNALS 

A continuous-time signal ( )x t  is periodic if for all t  and positive T  we have 

 ( ) ( )x t T x t   (I.17) 

A signal that is not periodic is said to be aperiodic. 

Constant T  is the period of ( )x t . Replacing t  with t T  in (I.17), we get 

 
( 2 ) ( )

( )

x t T x t T

x t

  


 (I.18) 

We can repeat the above step until we get for any integer n  

 ( ) ( )x t nT x t   (I.19) 

Hence, a periodic signal with period T  is also periodic with period nT , which means that a 
periodic signal has infinitely many periods that are all integer multiples of T . Since T  is the 
smallest period of ( )x t , it is called the fundamental period. Symbol 0T  is often used to denote the 

fundamental period. 
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0T  is usually measured in seconds. The fundamental frequency (measured in Hz) is given by 

 0
0

1
f

T
  (I.20) 

The fundamental angular frequency (measured in rad/s) is given by 

 
0 0

0

2

2

f

T

 





 (I.21) 

 

Other periodic signals are: 

 0( ) coscx t t . 

 0( ) sinsx t t . 

 ( ) constantx t  . Period is undefined. 

Example 

Power supplies that convert an ac voltage (sinusoidal voltage) into a dc voltage (constant voltage) 
are required in almost all electronic equipment that doesn’t use batteries. 

Following is a half-wave rectified signal: 

 

This signal is generated from a sinusoidal signal by replacing the negative half cycles of the 
sinusoid with a voltage of zero. The positive half cycles are unchanged. 
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Following is a full-wave rectified signal: 

 

This signal is generated from a sinusoidal signal by the amplitude reversal of each negative half 
cycle. The positive half cycles are unchanged. Note that the period of this signal is one-half that 
of the sinusoid and, hence, one-half that of the half-wave rectified signal. 

The sum of continuous-time periodic signals is periodic if and only if the ratios of the periods of 
the individual signals are ratios of integers. If a sum of N  periodic signals is periodic, the 
fundamental period can be found as follows 

1. Convert each period ratio 01 0nT T  for 2, ,n N   to a ratio of integers, where 01T  is the 

period of the first signal considered and 0nT  is the period of one of the other 1N   signals. 

If one or more of these ratios is not rational, then the sum of signals is not periodic. 
2. Eliminate common factors from the numerator and denominator of each ratio of integers. 
3. The fundamental period of the sum of signals is 0 0 01T k T  where 0k  is the least common 

multiple of the denominators of the individual ratios of integers. 

Example 

Consider the signals 

1 01
2

( ) cos3.5 ,
3.5

x t t T


   

2 02
2

( ) sin 2 ,
2

x t t T


   

3 03
7 2

( ) 2 cos ,
6 7 6

x t t T


    

Let 

1 2 3( ) ( ) ( ) ( )v t x t x t x t    

Then 

3N   
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01 01

02 03

4 7
 (ratio of integers),  (ratio of integers)

7 21

T T

T T
   

( )v t  is periodic. 

01

03

1

3

T

T
  

Least common multiple of denominators is 0 21k  . 

Fundamental period of ( )v t  is 

0 0 01

2
21

3.5
12

T k T







 



 

 

I.3. Sinusoidal Signals 

Continuous-time systems can be modeled using ordinary linear differential equations with constant 
coefficients. A signal that appears often in these models is one whose time rate of change is directly 
proportional to the signal itself. An example of this type of signal is the differential equation 

 ( ) ( )
d

x t ax t
dt

  (I.22) 

where a  is constant. The solution of this equation is the exponential function ( ) (0) atx t x e  for 

0t  . An example is the current in an RL circuit. 
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( ) ( ) 0
d R

L i t i t
dt L

   

( ) ( )
d R

i t i t
dt L

   

Thus, 

a R L   

( ) (0)
R

t
Li t i e


  

where (0)i  is the initial current. 

Consider the signal 

 ( ) atx t Ce  (I.23) 

Let’s assume that C  and a  are generally complex. Complex signals cannot appear in physical 
systems. However, the solutions of many differential equations are simplified by assuming that 
complex signals can appear both as excitations and in the solutions. Then, in translating the results 
back to physical systems, only the real part or the imaginary part of the solution is used. 

An important relation that is often applied in analyses which involve complex exponential 
functions is Euler’s relation, given by 

 cos sinje j     (I.24) 

 cos sinje j      (I.25) 

Adding (I.24) and (I.25), and dividing by 2, we get 

 cos
2

j je e 



  (I.26) 

Subtracting (I.25) from (I.24), and dividing by 2, we get 

 sin
2

j je e

j

 



  (I.27) 
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The last four relations are so useful in signal and system analysis that they should be memorized. 

A complex quantity A  can be represented in terms of its real and imaginary parts as follows 

 R IA A jA   (I.28) 

where RA  and IA  are, respectively, the real and imaginary parts of A , and are given by 

  ReRA A  (I.29) 

  ImIA A  (I.30) 

Note that both RA  and IA  are real quantities. 

A complex quantity A  can also be represented in polar form as follows 

 AA A    (I.31) 

where A  and A  are, respectively, the magnitude and phase of A , and are given by 

 2 2
R IA A A   (I.32) 

 1tan I
A

R

A

A
   

  
 

 (I.33) 

If we apply the above to the complex exponential function in (I.24), we have 

 
cos sin

jA e

j



 

 

 (I.34) 

Substituting (I.34) into (I.32) and (I.33), we get 

 
2 2cos sin

1

A   


 (I.35) 

 
1 sin

tan
cosA






    
 



 (I.36) 

The complex exponential can then be expressed in polar form as 

 1je     (I.37) 
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I.3.A. CASE 1: REAL C  AND a  

The signal ( ) atx t Ce  is plotted below for 0C   with 0a  , 0a  and 0a  . 

 

For 0a  , the signal magnitude increases monotonically without limit with increasing time. For 
0a , the signal magnitude decreases monotonically toward zero as time increases. For 0a  , the 

signal is constant. 

For 0a , the signal decays toward zero, but does not reach zero in finite time. To differentiate 
between exponentials that decay at different rates, we let 

 
1

a


   (I.38) 

where 0  . Substituting (I.38) into (I.23), the signal ( )x t  can be written in the form 

 
( ) at

t

x t Ce

Ce 





 (I.39) 

The constant parameter   is called the time constant of the exponential. 

The time constant of an exponential signal is illustrated in the below figure. 
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Example 

The signal 4( ) 3 tx t e   has a time constant 0.25   s. 

Exercise 

What is the value of the signal ( ) (0)
t

x t x e 


  when t  ? What is the value of 
( )

(0)

x

x


? 

The time derivative of ( )x t  in (I.39) is given by 

 ( )
t

d C
x t e

dt





   (I.40) 

Evaluating the derivative at 0t   yields 

 
0

( )
t

d C
x t

dt 
   (I.41) 

Equation (I.41) gives the rate of change of ( )x t  at 0t  . Note that, according to (I.40), the rate of 
change is a function of time. If the rate of change were constant and equal to the one in (I.41), the 
signal would reach the zero value to t  . In fact, the value of the signal at t   is equal to 

 

1( )

0.368

x Ce

C

e
C

 





 (I.42) 

Since (0)x C , 

 
( ) 0.368

0.368 (0)

x C

x

 


 (I.43) 

In conclusion, the exponential signal decays to approximately 36.8% of its initial value after a time 
interval that is equal to the time constant. 

 Exercise 

Determine 1

1

( )

( )

x t

x t


 for any 1 0t  . 

The below table illustrates the decay of an exponential signal at integer multiples of the time 
constant. As can be seen in the table, the signal decays to less than 1% of its initial value in five 
time constants. In practice, the exponential signal can be assumed to have vanished after five time 
constants. 
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I.3.B. CASE 2: COMPLEX C  AND IMAGINARY a  

 

0

( )

C

at

j
C C C

x t Ce

C A e A

a j

 




  


 (I.44) 

where CA , C , and 0  are real and constant. The complex exponential signal ( )x t  can be 

expressed as 

  

   

0

0

0 0

( )

cos sin

C

C

j j t
C

j t
C

C C C C

x t A e e

A e

A t jA t

 

 

   







   

 (I.45) 

The signal ( )x t  is periodic. Its fundamental angular frequency is 0 . The fundamental frequency 

is 0 0 2f   . The fundamental period is 0 0 01 2T f    . 

The real part of ( )x t  is given by 

 
 

 0

( ) Re ( )

cos

R

C C

x t x t

A t 



 
 (I.46) 

The signal ( )Rx t  is plotted in Figure I.7. 
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Figure I.7: Real part of complex exponential signal 
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u(t+T/2)  t0= - T/2 

-u(t-T/2)  t0= T/2 
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rect((t-T/2)/T): from 0 to T. 

rect((t+T/2)/T): from -T to 0. 
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